Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • Introduction

Data collection

data analysis

data analysis

Our editors will review what you’ve submitted and determine whether to revise the article.

  • Academia - Data Analysis
  • U.S. Department of Health and Human Services - Office of Research Integrity - Data Analysis
  • Chemistry LibreTexts - Data Analysis
  • IBM - What is Exploratory Data Analysis?
  • Table Of Contents

data analysis

data analysis , the process of systematically collecting, cleaning, transforming, describing, modeling, and interpreting data , generally employing statistical techniques. Data analysis is an important part of both scientific research and business, where demand has grown in recent years for data-driven decision making . Data analysis techniques are used to gain useful insights from datasets, which can then be used to make operational decisions or guide future research . With the rise of “Big Data,” the storage of vast quantities of data in large databases and data warehouses, there is increasing need to apply data analysis techniques to generate insights about volumes of data too large to be manipulated by instruments of low information-processing capacity.

Datasets are collections of information. Generally, data and datasets are themselves collected to help answer questions, make decisions, or otherwise inform reasoning. The rise of information technology has led to the generation of vast amounts of data of many kinds, such as text, pictures, videos, personal information, account data, and metadata, the last of which provide information about other data. It is common for apps and websites to collect data about how their products are used or about the people using their platforms. Consequently, there is vastly more data being collected today than at any other time in human history. A single business may track billions of interactions with millions of consumers at hundreds of locations with thousands of employees and any number of products. Analyzing that volume of data is generally only possible using specialized computational and statistical techniques.

The desire for businesses to make the best use of their data has led to the development of the field of business intelligence , which covers a variety of tools and techniques that allow businesses to perform data analysis on the information they collect.

For data to be analyzed, it must first be collected and stored. Raw data must be processed into a format that can be used for analysis and be cleaned so that errors and inconsistencies are minimized. Data can be stored in many ways, but one of the most useful is in a database . A database is a collection of interrelated data organized so that certain records (collections of data related to a single entity) can be retrieved on the basis of various criteria . The most familiar kind of database is the relational database , which stores data in tables with rows that represent records (tuples) and columns that represent fields (attributes). A query is a command that retrieves a subset of the information in the database according to certain criteria. A query may retrieve only records that meet certain criteria, or it may join fields from records across multiple tables by use of a common field.

Frequently, data from many sources is collected into large archives of data called data warehouses. The process of moving data from its original sources (such as databases) to a centralized location (generally a data warehouse) is called ETL (which stands for extract , transform , and load ).

  • The extraction step occurs when you identify and copy or export the desired data from its source, such as by running a database query to retrieve the desired records.
  • The transformation step is the process of cleaning the data so that they fit the analytical need for the data and the schema of the data warehouse. This may involve changing formats for certain fields, removing duplicate records, or renaming fields, among other processes.
  • Finally, the clean data are loaded into the data warehouse, where they may join vast amounts of historical data and data from other sources.

After data are effectively collected and cleaned, they can be analyzed with a variety of techniques. Analysis often begins with descriptive and exploratory data analysis. Descriptive data analysis uses statistics to organize and summarize data, making it easier to understand the broad qualities of the dataset. Exploratory data analysis looks for insights into the data that may arise from descriptions of distribution, central tendency, or variability for a single data field. Further relationships between data may become apparent by examining two fields together. Visualizations may be employed during analysis, such as histograms (graphs in which the length of a bar indicates a quantity) or stem-and-leaf plots (which divide data into buckets, or “stems,” with individual data points serving as “leaves” on the stem).

Data analysis frequently goes beyond descriptive analysis to predictive analysis, making predictions about the future using predictive modeling techniques. Predictive modeling uses machine learning , regression analysis methods (which mathematically calculate the relationship between an independent variable and a dependent variable), and classification techniques to identify trends and relationships among variables. Predictive analysis may involve data mining , which is the process of discovering interesting or useful patterns in large volumes of information. Data mining often involves cluster analysis , which tries to find natural groupings within data, and anomaly detection , which detects instances in data that are unusual and stand out from other patterns. It may also look for rules within datasets, strong relationships among variables in the data.

Data Analysis

  • Introduction to Data Analysis
  • Quantitative Analysis Tools
  • Qualitative Analysis Tools
  • Mixed Methods Analysis
  • Geospatial Analysis
  • Further Reading

Profile Photo

What is Data Analysis?

According to the federal government, data analysis is "the process of systematically applying statistical and/or logical techniques to describe and illustrate, condense and recap, and evaluate data" ( Responsible Conduct in Data Management ). Important components of data analysis include searching for patterns, remaining unbiased in drawing inference from data, practicing responsible  data management , and maintaining "honest and accurate analysis" ( Responsible Conduct in Data Management ). 

In order to understand data analysis further, it can be helpful to take a step back and understand the question "What is data?". Many of us associate data with spreadsheets of numbers and values, however, data can encompass much more than that. According to the federal government, data is "The recorded factual material commonly accepted in the scientific community as necessary to validate research findings" ( OMB Circular 110 ). This broad definition can include information in many formats. 

Some examples of types of data are as follows:

  • Photographs 
  • Hand-written notes from field observation
  • Machine learning training data sets
  • Ethnographic interview transcripts
  • Sheet music
  • Scripts for plays and musicals 
  • Observations from laboratory experiments ( CMU Data 101 )

Thus, data analysis includes the processing and manipulation of these data sources in order to gain additional insight from data, answer a research question, or confirm a research hypothesis. 

Data analysis falls within the larger research data lifecycle, as seen below. 

( University of Virginia )

Why Analyze Data?

Through data analysis, a researcher can gain additional insight from data and draw conclusions to address the research question or hypothesis. Use of data analysis tools helps researchers understand and interpret data. 

What are the Types of Data Analysis?

Data analysis can be quantitative, qualitative, or mixed methods. 

Quantitative research typically involves numbers and "close-ended questions and responses" ( Creswell & Creswell, 2018 , p. 3). Quantitative research tests variables against objective theories, usually measured and collected on instruments and analyzed using statistical procedures ( Creswell & Creswell, 2018 , p. 4). Quantitative analysis usually uses deductive reasoning. 

Qualitative  research typically involves words and "open-ended questions and responses" ( Creswell & Creswell, 2018 , p. 3). According to Creswell & Creswell, "qualitative research is an approach for exploring and understanding the meaning individuals or groups ascribe to a social or human problem" ( 2018 , p. 4). Thus, qualitative analysis usually invokes inductive reasoning. 

Mixed methods  research uses methods from both quantitative and qualitative research approaches. Mixed methods research works under the "core assumption... that the integration of qualitative and quantitative data yields additional insight beyond the information provided by either the quantitative or qualitative data alone" ( Creswell & Creswell, 2018 , p. 4). 

  • Next: Planning >>
  • Last Updated: Aug 20, 2024 3:01 PM
  • URL: https://guides.library.georgetown.edu/data-analysis

Creative Commons

  • Privacy Policy

Research Method

Home » Data Analysis – Process, Methods and Types

Data Analysis – Process, Methods and Types

Table of Contents

Data Analysis

Data Analysis

Definition:

Data analysis refers to the process of inspecting, cleaning, transforming, and modeling data with the goal of discovering useful information, drawing conclusions, and supporting decision-making. It involves applying various statistical and computational techniques to interpret and derive insights from large datasets. The ultimate aim of data analysis is to convert raw data into actionable insights that can inform business decisions, scientific research, and other endeavors.

Data Analysis Process

The following are step-by-step guides to the data analysis process:

Define the Problem

The first step in data analysis is to clearly define the problem or question that needs to be answered. This involves identifying the purpose of the analysis, the data required, and the intended outcome.

Collect the Data

The next step is to collect the relevant data from various sources. This may involve collecting data from surveys, databases, or other sources. It is important to ensure that the data collected is accurate, complete, and relevant to the problem being analyzed.

Clean and Organize the Data

Once the data has been collected, it needs to be cleaned and organized. This involves removing any errors or inconsistencies in the data, filling in missing values, and ensuring that the data is in a format that can be easily analyzed.

Analyze the Data

The next step is to analyze the data using various statistical and analytical techniques. This may involve identifying patterns in the data, conducting statistical tests, or using machine learning algorithms to identify trends and insights.

Interpret the Results

After analyzing the data, the next step is to interpret the results. This involves drawing conclusions based on the analysis and identifying any significant findings or trends.

Communicate the Findings

Once the results have been interpreted, they need to be communicated to stakeholders. This may involve creating reports, visualizations, or presentations to effectively communicate the findings and recommendations.

Take Action

The final step in the data analysis process is to take action based on the findings. This may involve implementing new policies or procedures, making strategic decisions, or taking other actions based on the insights gained from the analysis.

Types of Data Analysis

Types of Data Analysis are as follows:

Descriptive Analysis

This type of analysis involves summarizing and describing the main characteristics of a dataset, such as the mean, median, mode, standard deviation, and range.

Inferential Analysis

This type of analysis involves making inferences about a population based on a sample. Inferential analysis can help determine whether a certain relationship or pattern observed in a sample is likely to be present in the entire population.

Diagnostic Analysis

This type of analysis involves identifying and diagnosing problems or issues within a dataset. Diagnostic analysis can help identify outliers, errors, missing data, or other anomalies in the dataset.

Predictive Analysis

This type of analysis involves using statistical models and algorithms to predict future outcomes or trends based on historical data. Predictive analysis can help businesses and organizations make informed decisions about the future.

Prescriptive Analysis

This type of analysis involves recommending a course of action based on the results of previous analyses. Prescriptive analysis can help organizations make data-driven decisions about how to optimize their operations, products, or services.

Exploratory Analysis

This type of analysis involves exploring the relationships and patterns within a dataset to identify new insights and trends. Exploratory analysis is often used in the early stages of research or data analysis to generate hypotheses and identify areas for further investigation.

Data Analysis Methods

Data Analysis Methods are as follows:

Statistical Analysis

This method involves the use of mathematical models and statistical tools to analyze and interpret data. It includes measures of central tendency, correlation analysis, regression analysis, hypothesis testing, and more.

Machine Learning

This method involves the use of algorithms to identify patterns and relationships in data. It includes supervised and unsupervised learning, classification, clustering, and predictive modeling.

Data Mining

This method involves using statistical and machine learning techniques to extract information and insights from large and complex datasets.

Text Analysis

This method involves using natural language processing (NLP) techniques to analyze and interpret text data. It includes sentiment analysis, topic modeling, and entity recognition.

Network Analysis

This method involves analyzing the relationships and connections between entities in a network, such as social networks or computer networks. It includes social network analysis and graph theory.

Time Series Analysis

This method involves analyzing data collected over time to identify patterns and trends. It includes forecasting, decomposition, and smoothing techniques.

Spatial Analysis

This method involves analyzing geographic data to identify spatial patterns and relationships. It includes spatial statistics, spatial regression, and geospatial data visualization.

Data Visualization

This method involves using graphs, charts, and other visual representations to help communicate the findings of the analysis. It includes scatter plots, bar charts, heat maps, and interactive dashboards.

Qualitative Analysis

This method involves analyzing non-numeric data such as interviews, observations, and open-ended survey responses. It includes thematic analysis, content analysis, and grounded theory.

Multi-criteria Decision Analysis

This method involves analyzing multiple criteria and objectives to support decision-making. It includes techniques such as the analytical hierarchy process, TOPSIS, and ELECTRE.

Data Analysis Tools

There are various data analysis tools available that can help with different aspects of data analysis. Below is a list of some commonly used data analysis tools:

  • Microsoft Excel: A widely used spreadsheet program that allows for data organization, analysis, and visualization.
  • SQL : A programming language used to manage and manipulate relational databases.
  • R : An open-source programming language and software environment for statistical computing and graphics.
  • Python : A general-purpose programming language that is widely used in data analysis and machine learning.
  • Tableau : A data visualization software that allows for interactive and dynamic visualizations of data.
  • SAS : A statistical analysis software used for data management, analysis, and reporting.
  • SPSS : A statistical analysis software used for data analysis, reporting, and modeling.
  • Matlab : A numerical computing software that is widely used in scientific research and engineering.
  • RapidMiner : A data science platform that offers a wide range of data analysis and machine learning tools.

Applications of Data Analysis

Data analysis has numerous applications across various fields. Below are some examples of how data analysis is used in different fields:

  • Business : Data analysis is used to gain insights into customer behavior, market trends, and financial performance. This includes customer segmentation, sales forecasting, and market research.
  • Healthcare : Data analysis is used to identify patterns and trends in patient data, improve patient outcomes, and optimize healthcare operations. This includes clinical decision support, disease surveillance, and healthcare cost analysis.
  • Education : Data analysis is used to measure student performance, evaluate teaching effectiveness, and improve educational programs. This includes assessment analytics, learning analytics, and program evaluation.
  • Finance : Data analysis is used to monitor and evaluate financial performance, identify risks, and make investment decisions. This includes risk management, portfolio optimization, and fraud detection.
  • Government : Data analysis is used to inform policy-making, improve public services, and enhance public safety. This includes crime analysis, disaster response planning, and social welfare program evaluation.
  • Sports : Data analysis is used to gain insights into athlete performance, improve team strategy, and enhance fan engagement. This includes player evaluation, scouting analysis, and game strategy optimization.
  • Marketing : Data analysis is used to measure the effectiveness of marketing campaigns, understand customer behavior, and develop targeted marketing strategies. This includes customer segmentation, marketing attribution analysis, and social media analytics.
  • Environmental science : Data analysis is used to monitor and evaluate environmental conditions, assess the impact of human activities on the environment, and develop environmental policies. This includes climate modeling, ecological forecasting, and pollution monitoring.

When to Use Data Analysis

Data analysis is useful when you need to extract meaningful insights and information from large and complex datasets. It is a crucial step in the decision-making process, as it helps you understand the underlying patterns and relationships within the data, and identify potential areas for improvement or opportunities for growth.

Here are some specific scenarios where data analysis can be particularly helpful:

  • Problem-solving : When you encounter a problem or challenge, data analysis can help you identify the root cause and develop effective solutions.
  • Optimization : Data analysis can help you optimize processes, products, or services to increase efficiency, reduce costs, and improve overall performance.
  • Prediction: Data analysis can help you make predictions about future trends or outcomes, which can inform strategic planning and decision-making.
  • Performance evaluation : Data analysis can help you evaluate the performance of a process, product, or service to identify areas for improvement and potential opportunities for growth.
  • Risk assessment : Data analysis can help you assess and mitigate risks, whether it is financial, operational, or related to safety.
  • Market research : Data analysis can help you understand customer behavior and preferences, identify market trends, and develop effective marketing strategies.
  • Quality control: Data analysis can help you ensure product quality and customer satisfaction by identifying and addressing quality issues.

Purpose of Data Analysis

The primary purposes of data analysis can be summarized as follows:

  • To gain insights: Data analysis allows you to identify patterns and trends in data, which can provide valuable insights into the underlying factors that influence a particular phenomenon or process.
  • To inform decision-making: Data analysis can help you make informed decisions based on the information that is available. By analyzing data, you can identify potential risks, opportunities, and solutions to problems.
  • To improve performance: Data analysis can help you optimize processes, products, or services by identifying areas for improvement and potential opportunities for growth.
  • To measure progress: Data analysis can help you measure progress towards a specific goal or objective, allowing you to track performance over time and adjust your strategies accordingly.
  • To identify new opportunities: Data analysis can help you identify new opportunities for growth and innovation by identifying patterns and trends that may not have been visible before.

Examples of Data Analysis

Some Examples of Data Analysis are as follows:

  • Social Media Monitoring: Companies use data analysis to monitor social media activity in real-time to understand their brand reputation, identify potential customer issues, and track competitors. By analyzing social media data, businesses can make informed decisions on product development, marketing strategies, and customer service.
  • Financial Trading: Financial traders use data analysis to make real-time decisions about buying and selling stocks, bonds, and other financial instruments. By analyzing real-time market data, traders can identify trends and patterns that help them make informed investment decisions.
  • Traffic Monitoring : Cities use data analysis to monitor traffic patterns and make real-time decisions about traffic management. By analyzing data from traffic cameras, sensors, and other sources, cities can identify congestion hotspots and make changes to improve traffic flow.
  • Healthcare Monitoring: Healthcare providers use data analysis to monitor patient health in real-time. By analyzing data from wearable devices, electronic health records, and other sources, healthcare providers can identify potential health issues and provide timely interventions.
  • Online Advertising: Online advertisers use data analysis to make real-time decisions about advertising campaigns. By analyzing data on user behavior and ad performance, advertisers can make adjustments to their campaigns to improve their effectiveness.
  • Sports Analysis : Sports teams use data analysis to make real-time decisions about strategy and player performance. By analyzing data on player movement, ball position, and other variables, coaches can make informed decisions about substitutions, game strategy, and training regimens.
  • Energy Management : Energy companies use data analysis to monitor energy consumption in real-time. By analyzing data on energy usage patterns, companies can identify opportunities to reduce energy consumption and improve efficiency.

Characteristics of Data Analysis

Characteristics of Data Analysis are as follows:

  • Objective : Data analysis should be objective and based on empirical evidence, rather than subjective assumptions or opinions.
  • Systematic : Data analysis should follow a systematic approach, using established methods and procedures for collecting, cleaning, and analyzing data.
  • Accurate : Data analysis should produce accurate results, free from errors and bias. Data should be validated and verified to ensure its quality.
  • Relevant : Data analysis should be relevant to the research question or problem being addressed. It should focus on the data that is most useful for answering the research question or solving the problem.
  • Comprehensive : Data analysis should be comprehensive and consider all relevant factors that may affect the research question or problem.
  • Timely : Data analysis should be conducted in a timely manner, so that the results are available when they are needed.
  • Reproducible : Data analysis should be reproducible, meaning that other researchers should be able to replicate the analysis using the same data and methods.
  • Communicable : Data analysis should be communicated clearly and effectively to stakeholders and other interested parties. The results should be presented in a way that is understandable and useful for decision-making.

Advantages of Data Analysis

Advantages of Data Analysis are as follows:

  • Better decision-making: Data analysis helps in making informed decisions based on facts and evidence, rather than intuition or guesswork.
  • Improved efficiency: Data analysis can identify inefficiencies and bottlenecks in business processes, allowing organizations to optimize their operations and reduce costs.
  • Increased accuracy: Data analysis helps to reduce errors and bias, providing more accurate and reliable information.
  • Better customer service: Data analysis can help organizations understand their customers better, allowing them to provide better customer service and improve customer satisfaction.
  • Competitive advantage: Data analysis can provide organizations with insights into their competitors, allowing them to identify areas where they can gain a competitive advantage.
  • Identification of trends and patterns : Data analysis can identify trends and patterns in data that may not be immediately apparent, helping organizations to make predictions and plan for the future.
  • Improved risk management : Data analysis can help organizations identify potential risks and take proactive steps to mitigate them.
  • Innovation: Data analysis can inspire innovation and new ideas by revealing new opportunities or previously unknown correlations in data.

Limitations of Data Analysis

  • Data quality: The quality of data can impact the accuracy and reliability of analysis results. If data is incomplete, inconsistent, or outdated, the analysis may not provide meaningful insights.
  • Limited scope: Data analysis is limited by the scope of the data available. If data is incomplete or does not capture all relevant factors, the analysis may not provide a complete picture.
  • Human error : Data analysis is often conducted by humans, and errors can occur in data collection, cleaning, and analysis.
  • Cost : Data analysis can be expensive, requiring specialized tools, software, and expertise.
  • Time-consuming : Data analysis can be time-consuming, especially when working with large datasets or conducting complex analyses.
  • Overreliance on data: Data analysis should be complemented with human intuition and expertise. Overreliance on data can lead to a lack of creativity and innovation.
  • Privacy concerns: Data analysis can raise privacy concerns if personal or sensitive information is used without proper consent or security measures.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Descriptive Statistics

Descriptive Statistics – Types, Methods and...

Content Analysis

Content Analysis – Methods, Types and Examples

Institutional Review Board (IRB)

Institutional Review Board – Application Sample...

Research Paper

Research Paper – Structure, Examples and Writing...

Cluster Analysis

Cluster Analysis – Types, Methods and Examples

Research Methods

Research Methods – Types, Examples and Guide

Quantitative Data Analysis: Everything You Need to Know

11 min read

Quantitative Data Analysis: Everything You Need to Know cover

Does the thought of quantitative data analysis bring back the horrors of math classes? We get it.

But conducting quantitative data analysis doesn’t have to be hard with the right tools. Want to learn how to turn raw numbers into actionable insights on how to improve your product?

In this article, we explore what quantitative data analysis is, the difference between quantitative and qualitative data analysis, and statistical methods you can apply to your data. We also walk you through the steps you can follow to analyze quantitative information, and how Userpilot can help you streamline the product analytics process. Let’s get started.

  • Quantitative data analysis is the process of using statistical methods to define, summarize, and contextualize numerical data.
  • Quantitative analysis is different from a qualitative one. The first deals with numerical data and focuses on answering “what,” “when,” and “where.” However, a qualitative analysis relies on text, graphics, or videos and explores “why” and “how” events occur.
  • Pros of quantitative data analysis include objectivity, reliability, ease of comparison, and scalability.
  • Cons of quantitative metrics include the data’s limited context and inflexibility, and the need for large sample sizes to get statistical significance.
  • The methods for analyzing quantitative data are descriptive and inferential statistics.
  • Choosing the right analysis method depends on the type of data collected and the specific research questions or hypotheses.
  • These are the steps to conduct quantitative data analysis: 1. Defining goals and KPIs . 2. Collecting and cleaning data. 3. Visualizing the data. 4. Identifying patterns . 5. Sharing insights. 6. Acting on findings to improve decision-making.
  • With Userpilot , you can auto-capture in-app user interactions and build analytics dashboards . This tool also lets you conduct A/B and multivariate tests, and funnel and cohort analyses .
  • Gather and visualize all your product analytics in one place with Userpilot. Get a demo .

definition of data analysis in research

Try Userpilot and Take Your Product Experience to the Next Level

  • 14 Day Trial
  • No Credit Card Required

definition of data analysis in research

What is quantitative data analysis?

Quantitative data analysis is about applying statistical analysis methods to define, summarize, and contextualize numerical data. In short, it’s about turning raw numbers and data into actionable insights.

The analysis will vary depending on the research questions and the collected data (more on this below).

Quantitative vs qualitative data analysis

The main difference between these forms of analysis lies in the collected data. Quantitative data is numerical or easily quantifiable. For example, the answers to a customer satisfaction score (CSAT) survey are quantitative since you can count the number of people who answered “very satisfied”.

Qualitative feedback , on the other hand, analyzes information that requires interpretation. For instance, evaluating graphics, videos, text-based answers, or impressions.

Another difference between quantitative and qualitative analysis is the questions each seeks to answer. For instance, quantitative data analysis primarily answers what happened, when it happened, and where it happened. However, qualitative data analysis answers why and how an event occurred.

Quantitative data analysis also looks into identifying patterns , drivers, and metrics for different groups. However, qualitative analysis digs deeper into the sample dataset to understand underlying motivations and thinking processes.

Pros of quantitative data analysis

Quantitative or data-driven analysis has advantages such as:

  • Objectivity and reliability. Since quantitative analysis is based on numerical data, this reduces biases and allows for more objective conclusions. Also, by relying on statistics, this method ensures the results are consistent and can be replicated by others, making the findings more reliable.
  • Easy comparison. Quantitative data is easily comparable because you can identify trends , patterns, correlations, and differences within the same group and KPIs over time. But also, you can compare metrics in different scales by normalizing the data, e.g., bringing ratios and percentages into the same scale for comparison.
  • Scalability. Quantitative analysis can handle large volumes of data efficiently, making it suitable for studies involving large populations or datasets. This makes this data analysis method scalable. Plus, researchers can use quantitative analysis to generalize their findings to broader populations.

Cons of quantitative data analysis

These are common disadvantages of data-driven analytics :

  • Limited context. Since quantitative data looks at the numbers, it often strips away the data from the context, which can show the underlying reasons behind certain trends. This limitation can lead to a superficial understanding of complex issues, as you often miss the nuances and user motivations behind the data points.
  • Inflexibility. When conducting quantitative research, you don’t have room to improvise based on the findings. You need to have predefined hypotheses, follow scientific methods, and select data collection instruments. This makes the process less adaptable to new or unexpected findings.
  • Large sample sizes necessary. You need to use large sample sizes to achieve statistical significance and reliable results when doing quantitative analysis. Depending on the type of study you’re conducting, gathering such extensive data can be resource-intensive, time-consuming, and costly.

Quantitative data analysis methods

There are two statistical methods for reviewing quantitative data and user analytics . However, before exploring these in-depth, let’s refresh these key concepts:

  • Population. This is the entire group of individuals or entities that are relevant to the research.
  • Sample. The sample is a subset of the population that is actually selected for the research since it is often impractical or impossible to study the entire population.
  • Statistical significance. The chances that the results gathered after your analysis are realistic and not due to random chance.

Here are methods for analyzing quantitative data:

Descriptive statistics

Descriptive statistics, as the name implies, describe your data and help you understand your sample in more depth. It doesn’t make inferences about the entire population but only focuses on the details of your specific sample.

Descriptive statistics usually include measures like the mean, median, percentage, frequency, skewness, and mode.

Inferential statistics

Inferential statistics aim to make predictions and test hypotheses about the real-world population based on your sample data.

Here, you can use methods such as a T-test, ANOVA, regression analysis, and correlation analysis.

Let’s take a look at this example. Through descriptive statistics, you identify that users under the age of 25 are more likely to skip your onboarding. You’ll need to apply inferential statistics to determine if the result is statistically significant and applicable to your entire ’25 or younger’ population.

How to choose the right method for your quantitative data analysis

The type of data that you collect and the research questions that you want to answer will impact which quantitative data analysis method you choose. Here’s how to choose the right method:

Determine your data type

Before choosing the quantitative data analysis method, you need to identify which group your data belongs to:

  • Nominal —categories with no specific order, e.g., gender, age, or preferred device.
  • Ordinal —categories with a specific order, but the intervals between them aren’t equal, e.g., customer satisfaction ratings .
  • Interval —categories with an order and equal intervals, but no true zero point, e.g., temperature (where zero doesn’t mean “no temperature”).
  • Ratio —categories with a specific order, equal intervals, and a true zero point, e.g., number of sessions per user .

Applying any statistical method to all data types can lead to meaningless results. Instead, identify which statistical analysis method supports your collected data types.

Consider your research questions

The specific research questions you want to answer, and your hypothesis (if you have one) impact the analysis method you choose. This is because they define the type of data you’ll collect and the relationships you’re investigating.

For instance, if you want to understand sample specifics, descriptive statistics—such as tracking NPS —will work. However, if you want to determine if other variables affect the NPS, you’ll need to conduct an inferential analysis.

The overarching questions vary in both of the previous examples. For calculating the NPS, your internal research question might be, “Where do we stand in customer loyalty ?” However, if you’re doing inferential analysis, you may ask, “How do various factors, such as demographics, affect NPS?”

6 steps to do quantitative data analysis and extract meaningful insights

Here’s how to conduct quantitative analysis and extract customer insights :

1. Set goals for your analysis

Before diving into data collection, you need to define clear goals for your analysis as these will guide the process. This is because your objectives determine what to look for and where to find data. These goals should also come with key performance indicators (KPIs) to determine how you’ll measure success.

For example, imagine your goal is to increase user engagement. So, relevant KPIs include product engagement score , feature usage rate , user retention rate, or other relevant product engagement metrics .

2. Collect quantitative data

Once you’ve defined your goals, you need to gather the data you’ll analyze. Quantitative data can come from multiple sources, including user surveys such as NPS, CSAT, and CES, website and application analytics , transaction records, and studies or whitepapers.

Remember: This data should help you reach your goals. So, if you want to increase user engagement , you may need to gather data from a mix of sources.

For instance, product analytics tools can provide insights into how users interact with your tool, click on buttons, or change text. Surveys, on the other hand, can capture user satisfaction levels . Collecting a broad range of data makes your analysis more robust and comprehensive.

Raw event auto-tracking in Userpilot

3. Clean and visualize your data

Raw data is often messy and contains duplicates, outliers, or missing values that can skew your analysis. Before making any calculations, clean the data by removing these anomalies or outliers to ensure accurate results.

Once cleaned, turn it into visual data by using different types of charts , graphs, or heatmaps . Visualizations and data analytics charts make it easier to spot trends, patterns, and anomalies. If you’re using Userpilot, you can choose your preferred visualizations and organize your dashboard to your liking.

4. Identify patterns and trends

When looking at your dashboards, identify recurring themes, unusual spikes, or consistent declines that might indicate data analytics trends or potential issues.

Picture this: You notice a consistent increase in feature usage whenever you run seasonal marketing campaigns . So, you segment the data based on different promotional strategies. There, you discover that users exposed to email marketing campaigns have a 30% higher engagement rate than those reached through social media ads.

In this example, the pattern suggests that email promotions are more effective in driving feature usage.

If you’re a Userpilot user, you can conduct a trend analysis by tracking how your users perform certain events.

Trend analysis report in Userpilot

5. Share valuable insights with key stakeholders

Once you’ve discovered meaningful insights, you have to communicate them to your organization’s key stakeholders. Do this by turning your data into a shareable analysis report , one-pager, presentation, or email with clear and actionable next steps.

Your goal at this stage is for others to view and understand the data easily so they can use the insights to make data-led decisions.

Following the previous example, let’s say you’ve found that email campaigns significantly boost feature usage. Your email to other stakeholders should strongly recommend increasing the frequency of these campaigns and adding the supporting data points.

Take a look at how easy it is to share custom dashboards you built in Userpilot with others via email:

6. Act on the insights

Data analysis is only valuable if it leads to actionable steps that improve your product or service. So, make sure to act upon insights by assigning tasks to the right persons.

For example, after analyzing user onboarding data, you may find that users who completed the onboarding checklist were 3x more likely to become paying customers ( like Sked Social did! ).

Now that you have actual data on the checklist’s impact on conversions, you can work on improving it, such as simplifying its steps, adding interactive features, and launching an A/B test to experiment with different versions.

How can Userpilot help with analyzing quantitative data

As you’ve seen throughout this article, using a product analytics tool can simplify your data analysis and help you get insights faster. Here are different ways in which Userpilot can help:

Automatically capture quantitative data

Thanks to Userpilot’s new auto-capture feature, you can automatically track every time your users click, write a text, or fill out a form in your app—no engineers or manual tagging required!

Our customer analytics platform lets you use this data to build segments, trigger personalized in-app events and experiences, or launch surveys.

If you don’t want to auto-capture raw data, you can turn this functionality off in your settings, as seen below:

Auto-capture raw data settings in Userpilot

Monitor key metrics with customizable dashboards for real-time insights

Userpilot comes with template analytics dashboards , such as new user activation dashboards or customer engagement dashboards . However, you can create custom dashboards and reports to keep track of metrics that are relevant to your business in real time.

For instance, you could build a customer retention analytics dashboard and include all metrics that you find relevant, such as customer stickiness , NPS, or last accessed date.

Analyze experiment data with A/B and multivariate tests

Userpilot lets you conduct A/B and multivariate tests , either by following a controlled or a head-to-head approach. You can track the results on a dashboard.

For example, let’s say you want to test a variation of your onboarding flow to determine which leads to higher user activation .

You can go to Userpilot’s Flows tab and click on Experiments. There, you’ll be able to select the type of test you want to run, for instance, a controlled A/B test , build a new flow, test it, and get the results.

Creating new experiments for A/B and multivariate testing in Userpilot

Use quantitative funnel analysis to increase conversion rates

With Userpilot, you can track your customers’ journey as they complete actions and move through the funnel. Funnel analytics give you insights into your conversion rates and conversion times between two events, helping you identify areas for improvement.

Imagine you want to analyze your free-to-paid conversions and the differences between devices. Just by looking at the graphic, you can draw some insights:

  • There’s a significant drop-off between steps one and two, and two and three, indicating potential user friction .
  • Users on desktops convert at higher rates than those on mobile or unspecified devices.
  • Your average freemium conversion time is almost three days.

funnel analysis view in Userpilot

Leverage cohort analysis to optimize retention

Another Userpilot functionality that can help you analyze quantitative data is cohort analysis . This powerful tool lets you group users based on shared characteristics or experiences, allowing you to analyze their behavior over time and identify trends, patterns, and the long-term impact of changes on user behavior.

For example, let’s say you recently released a feature and want to measure its impact on user retention. Via a cohort analysis, you can group users who started using your product after the update and compare their retention rates to previous cohorts.

You can do this in Userpilot by creating segments and then tracking user segments ‘ retention rates over time.

Retention analysis example in Userpilot

Check how many users adopted a feature with a retention table

In Userpilot, you can use retention tables to stay on top of feature adoption . This means you can track how many users continue to use a feature over time and which features are most valuable to your users. The video below shows how to choose the features or events you want to analyze in Userpilot.

As you’ve seen, to conduct quantitative analysis, you first need to identify your business and research goals. Then, collect, clean, and visualize the data to spot trends and patterns. Lastly, analyze the data, share it with stakeholders, and act upon insights to build better products and drive customer satisfaction.

To stay on top of your KPIs, you need a product analytics tool. With Userpilot, you can automate data capture, analyze product analytics, and view results in shareable dashboards. Want to try it for yourself? Get a demo .

Leave a comment Cancel reply

Save my name, email, and website in this browser for the next time I comment.

Book a demo with on of our product specialists

Get The Insights!

The fastest way to learn about Product Growth,Management & Trends.

The coolest way to learn about Product Growth, Management & Trends. Delivered fresh to your inbox, weekly.

definition of data analysis in research

The fastest way to learn about Product Growth, Management & Trends.

You might also be interested in ...

Aazar Ali Shad

Amplitude Tracking: How Does It Work and Are There Better Alternatives?

Saffa Faisal

Clari Autocapture: An In-Depth Look + A Better Alternative

Data Analysis in Quantitative Research

  • Reference work entry
  • First Online: 13 January 2019
  • Cite this reference work entry

definition of data analysis in research

  • Yong Moon Jung 2  

2346 Accesses

2 Citations

Quantitative data analysis serves as part of an essential process of evidence-making in health and social sciences. It is adopted for any types of research question and design whether it is descriptive, explanatory, or causal. However, compared with qualitative counterpart, quantitative data analysis has less flexibility. Conducting quantitative data analysis requires a prerequisite understanding of the statistical knowledge and skills. It also requires rigor in the choice of appropriate analysis model and the interpretation of the analysis outcomes. Basically, the choice of appropriate analysis techniques is determined by the type of research question and the nature of the data. In addition, different analysis techniques require different assumptions of data. This chapter provides introductory guides for readers to assist them with their informed decision-making in choosing the correct analysis models. To this end, it begins with discussion of the levels of measure: nominal, ordinal, and scale. Some commonly used analysis techniques in univariate, bivariate, and multivariate data analysis are presented for practical examples. Example analysis outcomes are produced by the use of SPSS (Statistical Package for Social Sciences).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

definition of data analysis in research

Data Analysis Techniques for Quantitative Study

definition of data analysis in research

Meta-Analytic Methods for Public Health Research

Armstrong JS. Significance tests harm progress in forecasting. Int J Forecast. 2007;23(2):321–7.

Article   Google Scholar  

Babbie E. The practice of social research. 14th ed. Belmont: Cengage Learning; 2016.

Google Scholar  

Brockopp DY, Hastings-Tolsma MT. Fundamentals of nursing research. Boston: Jones & Bartlett; 2003.

Creswell JW. Research design: qualitative, quantitative, and mixed methods approaches. Thousand Oaks: Sage; 2014.

Fawcett J. The relationship of theory and research. Philadelphia: F. A. Davis; 1999.

Field A. Discovering statistics using IBM SPSS statistics. London: Sage; 2013.

Grove SK, Gray JR, Burns N. Understanding nursing research: building an evidence-based practice. 6th ed. St. Louis: Elsevier Saunders; 2015.

Hair JF, Black WC, Babin BJ, Anderson RE, Tatham RD. Multivariate data analysis. Upper Saddle River: Pearson Prentice Hall; 2006.

Katz MH. Multivariable analysis: a practical guide for clinicians. Cambridge: Cambridge University Press; 2006.

Book   Google Scholar  

McHugh ML. Scientific inquiry. J Specialists Pediatr Nurs. 2007; 8 (1):35–7. Volume 8, Issue 1, Version of Record online: 22 FEB 2007

Pallant J. SPSS survival manual: a step by step guide to data analysis using IBM SPSS. Sydney: Allen & Unwin; 2016.

Polit DF, Beck CT. Nursing research: principles and methods. Philadelphia: Lippincott Williams & Wilkins; 2004.

Trochim WMK, Donnelly JP. Research methods knowledge base. 3rd ed. Mason: Thomson Custom Publishing; 2007.

Tabachnick, B. G., & Fidell, L. S. (2013). Using multivariate statistics. Boston: Pearson Education.

Wells CS, Hin JM. Dealing with assumptions underlying statistical tests. Psychol Sch. 2007;44(5):495–502.

Download references

Author information

Authors and affiliations.

Centre for Business and Social Innovation, University of Technology Sydney, Ultimo, NSW, Australia

Yong Moon Jung

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Yong Moon Jung .

Editor information

Editors and affiliations.

School of Science and Health, Western Sydney University, Penrith, NSW, Australia

Pranee Liamputtong

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry.

Jung, Y.M. (2019). Data Analysis in Quantitative Research. In: Liamputtong, P. (eds) Handbook of Research Methods in Health Social Sciences. Springer, Singapore. https://doi.org/10.1007/978-981-10-5251-4_109

Download citation

DOI : https://doi.org/10.1007/978-981-10-5251-4_109

Published : 13 January 2019

Publisher Name : Springer, Singapore

Print ISBN : 978-981-10-5250-7

Online ISBN : 978-981-10-5251-4

eBook Packages : Social Sciences Reference Module Humanities and Social Sciences Reference Module Business, Economics and Social Sciences

Share this entry

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

PW Skills | Blog

Data Analysis Techniques in Research – Methods, Tools & Examples

' src=

Varun Saharawat is a seasoned professional in the fields of SEO and content writing. With a profound knowledge of the intricate aspects of these disciplines, Varun has established himself as a valuable asset in the world of digital marketing and online content creation.

data analysis techniques in research

Data analysis techniques in research are essential because they allow researchers to derive meaningful insights from data sets to support their hypotheses or research objectives.

Data Analysis Techniques in Research : While various groups, institutions, and professionals may have diverse approaches to data analysis, a universal definition captures its essence. Data analysis involves refining, transforming, and interpreting raw data to derive actionable insights that guide informed decision-making for businesses.

Data Analytics Course

A straightforward illustration of data analysis emerges when we make everyday decisions, basing our choices on past experiences or predictions of potential outcomes.

If you want to learn more about this topic and acquire valuable skills that will set you apart in today’s data-driven world, we highly recommend enrolling in the Data Analytics Course by Physics Wallah . And as a special offer for our readers, use the coupon code “READER” to get a discount on this course.

Table of Contents

What is Data Analysis?

Data analysis is the systematic process of inspecting, cleaning, transforming, and interpreting data with the objective of discovering valuable insights and drawing meaningful conclusions. This process involves several steps:

  • Inspecting : Initial examination of data to understand its structure, quality, and completeness.
  • Cleaning : Removing errors, inconsistencies, or irrelevant information to ensure accurate analysis.
  • Transforming : Converting data into a format suitable for analysis, such as normalization or aggregation.
  • Interpreting : Analyzing the transformed data to identify patterns, trends, and relationships.

Types of Data Analysis Techniques in Research

Data analysis techniques in research are categorized into qualitative and quantitative methods, each with its specific approaches and tools. These techniques are instrumental in extracting meaningful insights, patterns, and relationships from data to support informed decision-making, validate hypotheses, and derive actionable recommendations. Below is an in-depth exploration of the various types of data analysis techniques commonly employed in research:

1) Qualitative Analysis:

Definition: Qualitative analysis focuses on understanding non-numerical data, such as opinions, concepts, or experiences, to derive insights into human behavior, attitudes, and perceptions.

  • Content Analysis: Examines textual data, such as interview transcripts, articles, or open-ended survey responses, to identify themes, patterns, or trends.
  • Narrative Analysis: Analyzes personal stories or narratives to understand individuals’ experiences, emotions, or perspectives.
  • Ethnographic Studies: Involves observing and analyzing cultural practices, behaviors, and norms within specific communities or settings.

2) Quantitative Analysis:

Quantitative analysis emphasizes numerical data and employs statistical methods to explore relationships, patterns, and trends. It encompasses several approaches:

Descriptive Analysis:

  • Frequency Distribution: Represents the number of occurrences of distinct values within a dataset.
  • Central Tendency: Measures such as mean, median, and mode provide insights into the central values of a dataset.
  • Dispersion: Techniques like variance and standard deviation indicate the spread or variability of data.

Diagnostic Analysis:

  • Regression Analysis: Assesses the relationship between dependent and independent variables, enabling prediction or understanding causality.
  • ANOVA (Analysis of Variance): Examines differences between groups to identify significant variations or effects.

Predictive Analysis:

  • Time Series Forecasting: Uses historical data points to predict future trends or outcomes.
  • Machine Learning Algorithms: Techniques like decision trees, random forests, and neural networks predict outcomes based on patterns in data.

Prescriptive Analysis:

  • Optimization Models: Utilizes linear programming, integer programming, or other optimization techniques to identify the best solutions or strategies.
  • Simulation: Mimics real-world scenarios to evaluate various strategies or decisions and determine optimal outcomes.

Specific Techniques:

  • Monte Carlo Simulation: Models probabilistic outcomes to assess risk and uncertainty.
  • Factor Analysis: Reduces the dimensionality of data by identifying underlying factors or components.
  • Cohort Analysis: Studies specific groups or cohorts over time to understand trends, behaviors, or patterns within these groups.
  • Cluster Analysis: Classifies objects or individuals into homogeneous groups or clusters based on similarities or attributes.
  • Sentiment Analysis: Uses natural language processing and machine learning techniques to determine sentiment, emotions, or opinions from textual data.

Also Read: AI and Predictive Analytics: Examples, Tools, Uses, Ai Vs Predictive Analytics

Data Analysis Techniques in Research Examples

To provide a clearer understanding of how data analysis techniques are applied in research, let’s consider a hypothetical research study focused on evaluating the impact of online learning platforms on students’ academic performance.

Research Objective:

Determine if students using online learning platforms achieve higher academic performance compared to those relying solely on traditional classroom instruction.

Data Collection:

  • Quantitative Data: Academic scores (grades) of students using online platforms and those using traditional classroom methods.
  • Qualitative Data: Feedback from students regarding their learning experiences, challenges faced, and preferences.

Data Analysis Techniques Applied:

1) Descriptive Analysis:

  • Calculate the mean, median, and mode of academic scores for both groups.
  • Create frequency distributions to represent the distribution of grades in each group.

2) Diagnostic Analysis:

  • Conduct an Analysis of Variance (ANOVA) to determine if there’s a statistically significant difference in academic scores between the two groups.
  • Perform Regression Analysis to assess the relationship between the time spent on online platforms and academic performance.

3) Predictive Analysis:

  • Utilize Time Series Forecasting to predict future academic performance trends based on historical data.
  • Implement Machine Learning algorithms to develop a predictive model that identifies factors contributing to academic success on online platforms.

4) Prescriptive Analysis:

  • Apply Optimization Models to identify the optimal combination of online learning resources (e.g., video lectures, interactive quizzes) that maximize academic performance.
  • Use Simulation Techniques to evaluate different scenarios, such as varying student engagement levels with online resources, to determine the most effective strategies for improving learning outcomes.

5) Specific Techniques:

  • Conduct Factor Analysis on qualitative feedback to identify common themes or factors influencing students’ perceptions and experiences with online learning.
  • Perform Cluster Analysis to segment students based on their engagement levels, preferences, or academic outcomes, enabling targeted interventions or personalized learning strategies.
  • Apply Sentiment Analysis on textual feedback to categorize students’ sentiments as positive, negative, or neutral regarding online learning experiences.

By applying a combination of qualitative and quantitative data analysis techniques, this research example aims to provide comprehensive insights into the effectiveness of online learning platforms.

Also Read: Learning Path to Become a Data Analyst in 2024

Data Analysis Techniques in Quantitative Research

Quantitative research involves collecting numerical data to examine relationships, test hypotheses, and make predictions. Various data analysis techniques are employed to interpret and draw conclusions from quantitative data. Here are some key data analysis techniques commonly used in quantitative research:

1) Descriptive Statistics:

  • Description: Descriptive statistics are used to summarize and describe the main aspects of a dataset, such as central tendency (mean, median, mode), variability (range, variance, standard deviation), and distribution (skewness, kurtosis).
  • Applications: Summarizing data, identifying patterns, and providing initial insights into the dataset.

2) Inferential Statistics:

  • Description: Inferential statistics involve making predictions or inferences about a population based on a sample of data. This technique includes hypothesis testing, confidence intervals, t-tests, chi-square tests, analysis of variance (ANOVA), regression analysis, and correlation analysis.
  • Applications: Testing hypotheses, making predictions, and generalizing findings from a sample to a larger population.

3) Regression Analysis:

  • Description: Regression analysis is a statistical technique used to model and examine the relationship between a dependent variable and one or more independent variables. Linear regression, multiple regression, logistic regression, and nonlinear regression are common types of regression analysis .
  • Applications: Predicting outcomes, identifying relationships between variables, and understanding the impact of independent variables on the dependent variable.

4) Correlation Analysis:

  • Description: Correlation analysis is used to measure and assess the strength and direction of the relationship between two or more variables. The Pearson correlation coefficient, Spearman rank correlation coefficient, and Kendall’s tau are commonly used measures of correlation.
  • Applications: Identifying associations between variables and assessing the degree and nature of the relationship.

5) Factor Analysis:

  • Description: Factor analysis is a multivariate statistical technique used to identify and analyze underlying relationships or factors among a set of observed variables. It helps in reducing the dimensionality of data and identifying latent variables or constructs.
  • Applications: Identifying underlying factors or constructs, simplifying data structures, and understanding the underlying relationships among variables.

6) Time Series Analysis:

  • Description: Time series analysis involves analyzing data collected or recorded over a specific period at regular intervals to identify patterns, trends, and seasonality. Techniques such as moving averages, exponential smoothing, autoregressive integrated moving average (ARIMA), and Fourier analysis are used.
  • Applications: Forecasting future trends, analyzing seasonal patterns, and understanding time-dependent relationships in data.

7) ANOVA (Analysis of Variance):

  • Description: Analysis of variance (ANOVA) is a statistical technique used to analyze and compare the means of two or more groups or treatments to determine if they are statistically different from each other. One-way ANOVA, two-way ANOVA, and MANOVA (Multivariate Analysis of Variance) are common types of ANOVA.
  • Applications: Comparing group means, testing hypotheses, and determining the effects of categorical independent variables on a continuous dependent variable.

8) Chi-Square Tests:

  • Description: Chi-square tests are non-parametric statistical tests used to assess the association between categorical variables in a contingency table. The Chi-square test of independence, goodness-of-fit test, and test of homogeneity are common chi-square tests.
  • Applications: Testing relationships between categorical variables, assessing goodness-of-fit, and evaluating independence.

These quantitative data analysis techniques provide researchers with valuable tools and methods to analyze, interpret, and derive meaningful insights from numerical data. The selection of a specific technique often depends on the research objectives, the nature of the data, and the underlying assumptions of the statistical methods being used.

Also Read: Analysis vs. Analytics: How Are They Different?

Data Analysis Methods

Data analysis methods refer to the techniques and procedures used to analyze, interpret, and draw conclusions from data. These methods are essential for transforming raw data into meaningful insights, facilitating decision-making processes, and driving strategies across various fields. Here are some common data analysis methods:

  • Description: Descriptive statistics summarize and organize data to provide a clear and concise overview of the dataset. Measures such as mean, median, mode, range, variance, and standard deviation are commonly used.
  • Description: Inferential statistics involve making predictions or inferences about a population based on a sample of data. Techniques such as hypothesis testing, confidence intervals, and regression analysis are used.

3) Exploratory Data Analysis (EDA):

  • Description: EDA techniques involve visually exploring and analyzing data to discover patterns, relationships, anomalies, and insights. Methods such as scatter plots, histograms, box plots, and correlation matrices are utilized.
  • Applications: Identifying trends, patterns, outliers, and relationships within the dataset.

4) Predictive Analytics:

  • Description: Predictive analytics use statistical algorithms and machine learning techniques to analyze historical data and make predictions about future events or outcomes. Techniques such as regression analysis, time series forecasting, and machine learning algorithms (e.g., decision trees, random forests, neural networks) are employed.
  • Applications: Forecasting future trends, predicting outcomes, and identifying potential risks or opportunities.

5) Prescriptive Analytics:

  • Description: Prescriptive analytics involve analyzing data to recommend actions or strategies that optimize specific objectives or outcomes. Optimization techniques, simulation models, and decision-making algorithms are utilized.
  • Applications: Recommending optimal strategies, decision-making support, and resource allocation.

6) Qualitative Data Analysis:

  • Description: Qualitative data analysis involves analyzing non-numerical data, such as text, images, videos, or audio, to identify themes, patterns, and insights. Methods such as content analysis, thematic analysis, and narrative analysis are used.
  • Applications: Understanding human behavior, attitudes, perceptions, and experiences.

7) Big Data Analytics:

  • Description: Big data analytics methods are designed to analyze large volumes of structured and unstructured data to extract valuable insights. Technologies such as Hadoop, Spark, and NoSQL databases are used to process and analyze big data.
  • Applications: Analyzing large datasets, identifying trends, patterns, and insights from big data sources.

8) Text Analytics:

  • Description: Text analytics methods involve analyzing textual data, such as customer reviews, social media posts, emails, and documents, to extract meaningful information and insights. Techniques such as sentiment analysis, text mining, and natural language processing (NLP) are used.
  • Applications: Analyzing customer feedback, monitoring brand reputation, and extracting insights from textual data sources.

These data analysis methods are instrumental in transforming data into actionable insights, informing decision-making processes, and driving organizational success across various sectors, including business, healthcare, finance, marketing, and research. The selection of a specific method often depends on the nature of the data, the research objectives, and the analytical requirements of the project or organization.

Also Read: Quantitative Data Analysis: Types, Analysis & Examples

Data Analysis Tools

Data analysis tools are essential instruments that facilitate the process of examining, cleaning, transforming, and modeling data to uncover useful information, make informed decisions, and drive strategies. Here are some prominent data analysis tools widely used across various industries:

1) Microsoft Excel:

  • Description: A spreadsheet software that offers basic to advanced data analysis features, including pivot tables, data visualization tools, and statistical functions.
  • Applications: Data cleaning, basic statistical analysis, visualization, and reporting.

2) R Programming Language:

  • Description: An open-source programming language specifically designed for statistical computing and data visualization.
  • Applications: Advanced statistical analysis, data manipulation, visualization, and machine learning.

3) Python (with Libraries like Pandas, NumPy, Matplotlib, and Seaborn):

  • Description: A versatile programming language with libraries that support data manipulation, analysis, and visualization.
  • Applications: Data cleaning, statistical analysis, machine learning, and data visualization.

4) SPSS (Statistical Package for the Social Sciences):

  • Description: A comprehensive statistical software suite used for data analysis, data mining, and predictive analytics.
  • Applications: Descriptive statistics, hypothesis testing, regression analysis, and advanced analytics.

5) SAS (Statistical Analysis System):

  • Description: A software suite used for advanced analytics, multivariate analysis, and predictive modeling.
  • Applications: Data management, statistical analysis, predictive modeling, and business intelligence.

6) Tableau:

  • Description: A data visualization tool that allows users to create interactive and shareable dashboards and reports.
  • Applications: Data visualization , business intelligence , and interactive dashboard creation.

7) Power BI:

  • Description: A business analytics tool developed by Microsoft that provides interactive visualizations and business intelligence capabilities.
  • Applications: Data visualization, business intelligence, reporting, and dashboard creation.

8) SQL (Structured Query Language) Databases (e.g., MySQL, PostgreSQL, Microsoft SQL Server):

  • Description: Database management systems that support data storage, retrieval, and manipulation using SQL queries.
  • Applications: Data retrieval, data cleaning, data transformation, and database management.

9) Apache Spark:

  • Description: A fast and general-purpose distributed computing system designed for big data processing and analytics.
  • Applications: Big data processing, machine learning, data streaming, and real-time analytics.

10) IBM SPSS Modeler:

  • Description: A data mining software application used for building predictive models and conducting advanced analytics.
  • Applications: Predictive modeling, data mining, statistical analysis, and decision optimization.

These tools serve various purposes and cater to different data analysis needs, from basic statistical analysis and data visualization to advanced analytics, machine learning, and big data processing. The choice of a specific tool often depends on the nature of the data, the complexity of the analysis, and the specific requirements of the project or organization.

Also Read: How to Analyze Survey Data: Methods & Examples

Importance of Data Analysis in Research

The importance of data analysis in research cannot be overstated; it serves as the backbone of any scientific investigation or study. Here are several key reasons why data analysis is crucial in the research process:

  • Data analysis helps ensure that the results obtained are valid and reliable. By systematically examining the data, researchers can identify any inconsistencies or anomalies that may affect the credibility of the findings.
  • Effective data analysis provides researchers with the necessary information to make informed decisions. By interpreting the collected data, researchers can draw conclusions, make predictions, or formulate recommendations based on evidence rather than intuition or guesswork.
  • Data analysis allows researchers to identify patterns, trends, and relationships within the data. This can lead to a deeper understanding of the research topic, enabling researchers to uncover insights that may not be immediately apparent.
  • In empirical research, data analysis plays a critical role in testing hypotheses. Researchers collect data to either support or refute their hypotheses, and data analysis provides the tools and techniques to evaluate these hypotheses rigorously.
  • Transparent and well-executed data analysis enhances the credibility of research findings. By clearly documenting the data analysis methods and procedures, researchers allow others to replicate the study, thereby contributing to the reproducibility of research findings.
  • In fields such as business or healthcare, data analysis helps organizations allocate resources more efficiently. By analyzing data on consumer behavior, market trends, or patient outcomes, organizations can make strategic decisions about resource allocation, budgeting, and planning.
  • In public policy and social sciences, data analysis is instrumental in developing and evaluating policies and interventions. By analyzing data on social, economic, or environmental factors, policymakers can assess the effectiveness of existing policies and inform the development of new ones.
  • Data analysis allows for continuous improvement in research methods and practices. By analyzing past research projects, identifying areas for improvement, and implementing changes based on data-driven insights, researchers can refine their approaches and enhance the quality of future research endeavors.

However, it is important to remember that mastering these techniques requires practice and continuous learning. That’s why we highly recommend the Data Analytics Course by Physics Wallah . Not only does it cover all the fundamentals of data analysis, but it also provides hands-on experience with various tools such as Excel, Python, and Tableau. Plus, if you use the “ READER ” coupon code at checkout, you can get a special discount on the course.

For Latest Tech Related Information, Join Our Official Free Telegram Group : PW Skills Telegram Group

Data Analysis Techniques in Research FAQs

What are the 5 techniques for data analysis.

The five techniques for data analysis include: Descriptive Analysis Diagnostic Analysis Predictive Analysis Prescriptive Analysis Qualitative Analysis

What are techniques of data analysis in research?

Techniques of data analysis in research encompass both qualitative and quantitative methods. These techniques involve processes like summarizing raw data, investigating causes of events, forecasting future outcomes, offering recommendations based on predictions, and examining non-numerical data to understand concepts or experiences.

What are the 3 methods of data analysis?

The three primary methods of data analysis are: Qualitative Analysis Quantitative Analysis Mixed-Methods Analysis

What are the four types of data analysis techniques?

The four types of data analysis techniques are: Descriptive Analysis Diagnostic Analysis Predictive Analysis Prescriptive Analysis

card-img

  • 10 Most Popular Big Data Analytics Software

big data analytics software

Best Big Data Analytics Software: In the rapidly evolving realm of commerce, the capacity to harness the potential of data…

  • 6 Benefits of Data Analytics That Will Blow Your Mind!

definition of data analysis in research

Benefits of Data Analytics: In today's fast-paced and interconnected world, the sheer volume of data generated on a daily basis…

  • BI & Analytics: What’s The Difference?

bi & analytics

Business Intelligence is needed to run the business while Business Analytics is needed to change the business– Pat Roche, Vice…

right adv

Related Articles

  • Visual Analytics: Transforming Data into Actionable Insights
  • Top 10 Data Analytics Trends to Watch Out for in 2024
  • What is OLAP (Online Analytical Processing)?
  • Data Curation: How Does Data Curation Enhance Quality? Why Is It Essential?
  • 10 Best Data Analysis Courses with Certifications
  • Scope And Future of Data Analytics in 2025 And Beyond
  • What Is Business Analytics Business Intelligence?

bottom banner

  • Data Analysis
  • Data Science

What Is Data Analysis? The Complete Guide

Qasim Alhammad

Table of contents

What is data analysis, 2. prepare:, 3. process:, 4. analyze:, data analysis vs data analytics, data analysis vs data science, data analysis tools, data analytics types, data analytics techniques, data analysis soft skills, data analytics jobs, data analyst responsibilities, recommended data analytics courses, the bottom line.

From Gut Feeling to Data-Driven Decisions!

Data analysis or data analytics might sound like a modern concept for a new field, but the core idea and skillsets – using information to make better choices – has always been around.

Think about it: even basic decisions like what to wear or when to hunt involve analyzing some data, like the weather or animal tracks. Historically, leaders used spies to gather information about enemy forces, a prime example of data collection and analysis driving strategy in warfare.

Fast forward to today, data analysis is no longer a luxury, it’s a necessity. Companies across all industries leverage data to make informed decisions. From social media platforms personalizing your ads to Netflix recommending shows you’ll love, data analysis is everywhere.

In this comprehensive guide, we’ll delve into the world of data analysis. We’ll explore the essential skills, exciting career paths, and powerful methods used to transform data into actionable insights.

Data analysis is the art of uncovering valuable insights from data, This process involves collecting, cleaning, transforming, and organizing data to in a form that is easier to analyze, in order to find trends, insights, conclusions, and make predictions . Which empowers data-driven decision-making in various fields.

Why Data Analysis Is Important!

Companies in various industries and of all sizes use data analytics in order to increase their profits, but money is not the only aspect data analysis can improve, find out why below:

  • Making data-driven decisions: Data analysis helps you uncover trends, insights and facts about any aspect of your business in order to make informed decisions that lead to better outcomes.
  • Improve efficiency and productivity: Data analysis helps Uncover areas of improvements in processes and resource allocation by identifying trends and patterns in your data.
  • Gain a competitive edge: Analyze customer behavior, market trends, and competitor strategies to develop targeted approaches and stay ahead of the competition.
  • Solve problems:  Data analysis helps pinpoint root causes of issues and develop effective solutions.

Data Analytics Life Cycle

Data Analysis life Cycle

The data analytics life cycle describes the phases that data go through from even before collecting the data to making informed decisions. While there isn’t a single defined and agreed on structure to be followed by all data analysts, one that I find very useful and easy to follow is the Google data analytics life cycle which include the following phases:

The ask phase is the first step and it starts even before collecting any data. In this phase you need to ask questions in order to define very clearly the business challenge you are trying to solve, the project stakeholders, the project objectives, data you need to collect and how to collect it if it is not yet available.

You can follow the SMART Framework  for highly effective questions.

Once the business problem is clearly defined, the prepare phase starts which include data generation, data collection and retrieval, store the data, and perform data management.

Data quality is an important factor in data analytics, if your data is not of quality then you risk to make a wrong decision, the process phase focus on cleaning and transforming data into a shape that is easier to analyze.

The Analyze phase is where the fun starts, it is where you get to do Data exploration, visualization, and analysis; and finally make sense of the data you have.

You have done a great job finding trends and insights in your data, but if you can’t clearly  communicate these insights in a form that is easy for management to understand then no one will be able to make a decision, the share phase is all about communicating and interpreting results.

The Act phase is where you Put your insights to work to solve the problem.

Note that this process is an iterative process, for example if you have discovered something wrong in your data during the analyze phase, you can go back to the process phase to further clean the data or to the prepare phase to collect more data.

Although there is some arguably technical differences between Data Analysis and Data Analytics, however we are using both terms interchangeably through out this post.

In simple words data analytics describe the complete process of turning data into actionable insights (phases 1 through 6) while data analysis is a subset focusing on collecting, transforming and analyzing data (phases 2 through 4).

Data analysis and data science are both fields that deal with extracting knowledge from data, but they have some key differences:

  • Data Analysis:  Analyzes existing data to answer specific questions and identify trends. It’s more about understanding what happened in the past and why.
  • Data Science:  Uses data to create models that can predict future outcomes or develop new systems. It’s about using data to uncover hidden patterns and create tools for future use.
  • Data Analysis:  Focuses on cleaning, organizing, and visualizing data to communicate insights to stakeholders. Often uses pre-built tools and techniques.
  • Data Science:  Involves building new models and algorithms to solve problems. Requires more programming and statistical expertise.
  • Data Analysis:  Strong in data manipulation, communication, and data visualization. Needs a solid understanding of statistics and business acumen.
  • Data Science:  Requires programming skills (Python, R), statistical modeling, and machine learning expertise.

Think of data analysis as inspecting the ingredients and leftovers of a meal to understand what was cooked. Data science is like using those insights to create a new recipe or improve an existing one.

Here’s a table summarizing the key differences:

FeatureData AnalysisData Science
FocusPast data, trendsFuture predictions, new models
ProcessAnalyze existing dataBuild models, algorithms
SkillsData manipulation, communication, visualizationProgramming, statistics, machine learning

In short, data analysis is a core skill within the broader field of data science.

There are literally hundreds of tools that are used today in Data analytics, they are mainly categorized as following:

  • Spreadsheets: Spreadsheet tools are used mainly to save date in rows and columns format and can be used in calculations and basic data analysis. They can be even used for basic data exploration and data visualization and work like a charm for small to medium datasets. The most famous spreadsheet tools include Microsoft Excel and Google Sheets.
  • Programming Languages: For more complex tasks and larger datasets, Programming languages like Python and R offer powerful libraries specifically designed for data manipulation and analysis. They offer the capability to do statistical analysis and data visualization.
  • Query Languages: A powerful language specifically designed for extracting and manipulating data from databases. SQL (Structured Query Language) is the most widely used query language, allowing you to effectively retrieve and analyze data stored in relational databases. Some popular SQL programs include MySQL, Microsoft SQL Server, IBM DB2, and Google BigQuery.

Learn SQL with our 14 Best Resources For Learning SQL For Free

  • Visualization tools: Softwares like Tableau, Microsoft Power BI, Google Looker Studio, and IBM Cognos Analytics excel at data visualization, and creating interactive dashboards and reports that make data insights easily understandable and sharable.
  • Business Intelligence (BI) Tools or  ETL Tools: Data often resides in various formats and locations. ETL (Extract, Transform, Load) tools streamline the process of extracting data from disparate sources, transforming it into a consistent format, and loading it into a data warehouse or another target system for analysis. Popular ETL tools include Apache Kafka, Microsoft SSIS, Google Cloud Dataflow, and Informatica PowerCenter.
  • Statistical Analysis Software: Tools like SPSS, SAS, and Matlab are geared towards in-depth statistical analysis, hypothesis testing, and uncovering complex relationships within data.
  • Data Cleaning Software: Before you can analyze your data, you often need to clean it. Data cleaning software helps identify and rectify errors, inconsistencies, and missing values within your dataset. Popular data cleaning tools include OpenRefine (formerly Google Refine), Trifacta Wrangler, Tableau data prep, and WinPure Clean & Match. These tools can automate many cleaning tasks, saving you time and ensuring the accuracy of your analysis.

Data Analytics types

Data analysis isn’t a one-size-fits-all process. There are various techniques used to extract valuable insights from data, each suited to answer specific questions and achieve different goals. Understanding these different types of data analysis empowers you to choose the right tool for the job and unlock the full potential of your information.

Here’s a roadmap to some of the most common types of data analysis:

Descriptive Analysis: This is the foundation of data analysis. It provides a summary of your data, describing its central tendencies (like average or median) and variability (like range or standard deviation). It often uses basic statistical measures and visualizations like charts and graphs to paint a clear picture of your data’s characteristics.

Diagnostic Analysis: As the name suggests, diagnostic analysis delves deeper to diagnose the root causes of problems or identify areas for improvement. It leverages techniques like data mining and drill-down analysis to explore specific trends, outliers, and patterns within your data that might be contributing to an issue.

Exploratory Analysis: This type of analysis is all about discovery. It’s an open-ended journey where you explore your data to uncover hidden patterns, relationships, and trends that you might not have anticipated. Exploratory analysis often involves data visualization techniques and statistical methods to identify interesting questions and guide further investigation.

Inferential Analysis: This approach takes you beyond your initial dataset and allows you to draw conclusions about a larger population. By using statistical tests like hypothesis testing, you can make inferences about the broader population based on the sample of data you have analyzed. Inferential analysis helps you determine if the patterns you see in your data are likely to hold true for a larger group.

Predictive Analysis: Looking forward is a key aspect of data analysis. Predictive analysis leverages statistical modeling and machine learning techniques to forecast future trends and make predictions about what might happen next. This is critical for tasks like risk assessment, sales forecasting, and targeted marketing campaigns.

Prescriptive Analysis: Prescriptive analysis goes beyond prediction, it takes the insights from your data and uses them to recommend specific actions or courses of action. By leveraging optimization techniques and scenario modeling, it helps you identify the best course of action to achieve your desired outcomes.

Remember, these types of data analysis are not always linear and distinct stages. They can often be iterative, where you might move between them as you explore your data and refine your understanding.

The key is to choose the right type of data analysis for the specific questions you’re trying to answer and the goals you’re aiming to achieve. By mastering these diverse techniques, you’ll be well-equipped to unlock the hidden gems within your data and make informed decisions that drive success.

We’ve explored the various types of data analysis, but how do we put those into action? This is where data analysis techniques come in. These are the specific methods and algorithms data analysts use to manipulate, explore, and model data to extract meaningful insights.

Here’s a glimpse into some of the most powerful data analysis techniques:

Statistical Analysis: This is the foundation of many data analysis techniques. It involves using statistical methods to summarize, describe, and analyze data. Common statistical techniques include measures of central tendency (mean, median, mode) and dispersion (variance, standard deviation), correlation analysis to identify relationships between variables, and hypothesis testing to draw inferences from your data.

Regression Analysis: This technique explores the relationship between a dependent variable (what you’re trying to predict) and one or more independent variables (factors that might influence the dependent variable). Regression analysis helps you understand how changes in the independent variables can affect the dependent variable and even predict future values.

Clustering Analysis: This unsupervised learning technique is used to group similar data points together. It’s like sorting data points into categories based on their characteristics, helping you identify hidden patterns and segment your data for further analysis.

Classification Analysis: In contrast to clustering, classification analysis is a supervised learning technique. Here, you use a labeled dataset (data where the category or group is already known) to train a model to classify new, unlabeled data points. This is commonly used for tasks like spam filtering, fraud detection, or customer segmentation.

Time Series Analysis: When you’re dealing with data that’s collected over time (like sales figures or stock prices), time series analysis comes into play. This technique helps you identify trends, seasonality, and patterns within the data over time. It’s critical for forecasting future trends and making informed decisions.

Text Analysis: The world is full of textual data, from social media posts to customer reviews. Text analysis techniques, also known as Natural Language Processing (NLP), help you extract meaning from this unstructured data. You can use NLP to identify sentiment (positive, negative, neutral), classify topics, and even generate text summaries.

Machine Learning: Machine learning algorithms learn from data without being explicitly programmed. They can identify complex patterns, make predictions, and even improve their performance over time. Machine learning is a powerful tool for a wide range of data analysis tasks, from image recognition to fraud detection.

These are just a few examples of the many data analysis techniques available. The specific techniques you’ll use will depend on the type of data you have, the questions you’re trying to answer, and the goals you’re aiming to achieve.

But by understanding these core techniques, you’ll be well on your way to becoming a data analysis whiz, able to transform raw data into actionable insights that drive real-world results.

You might like:  23 Free Public Datasets Sites Every Data Analyst Must Know

While technical skills are crucial, success in data analysis hinges on a surprising secret weapon: soft skills.

Soft skills encompass the interpersonal and communication abilities that enable you to navigate the human side of data. They are the glue that binds your technical expertise with effective communication, collaboration, and problem-solving, transforming you from a data translator into a trusted partner who can influence decisions and drive results.

Here’s a toolbox of essential soft skills for data analysts:

Communication: Data analysis is all about translating insights from complex data into clear, concise, and actionable stories. You need to communicate effectively with both technical and non-technical audiences, tailoring your message to resonate with their level of understanding. Strong writing and presentation skills are key to getting stakeholders invested in your findings.

Collaboration: Data analysis is rarely a solo endeavor. You’ll often collaborate with subject matter experts from different departments, data engineers who maintain the infrastructure, and business leaders who make strategic decisions based on your insights. The ability to work effectively as part of a team, actively listen to diverse perspectives, and foster a collaborative environment is essential.

Critical Thinking: Data can be messy and misleading. Critical thinking empowers you to analyze data objectively, identify patterns and trends, and separate signal from noise. You’ll need to ask the right questions, challenge assumptions, and draw sound conclusions based on evidence.

Curiosity: The best data analysts are inherently curious, with a thirst for knowledge and a desire to understand the why behind the numbers. They never stop asking questions, exploring new approaches, and staying up-to-date on the latest data analysis trends and technologies.

Problem-Solving: Data is often used to identify problems and develop solutions. Strong problem-solving skills are essential for dissecting complex issues, identifying root causes, and leveraging data to formulate effective solutions.

Storytelling: Data visualizations and reports are powerful tools for conveying insights. But true impact comes from weaving data into a compelling story that captures the audience’s attention and ignites action. Hone your storytelling skills to make your data analysis resonate and inspire data-driven decisions.

By cultivating these soft skills, you’ll transform from a data technician into a data analyst who can truly make a difference. So, don’t underestimate the power of soft skills; they are the secret weapon that will unlock your full potential in the exciting world of data analysis.

Data Analytics is one of most demanded jobs today specially remotely. The demand for data analysts is higher than the number of qualified data analysts. According to Lightcast™ US Job Postings, the median US Salary for data analytics jobs is $92,000 with more than 480,000 us job openings.

You should note that there is often a lot of jobs and roles that seems similar to data analysis and might even have some overlap in skillset and tasks. In medium size business they often combine different roles in one position.

Below is a list of similar yet different roles that focus mainly on specific tasks other than data analytics. You should always read the full job description to align the job requirement with your list of skillsets and specialties.

  • Business analyst — analyzes data to help businesses improve processes, products, or services. They often focus on the business side and work closely with data engineers and data analysts.
  • Data analytics consultant — analyzes the systems and models for using data.
  • Data engineer — prepares and integrates data from different sources for analytical use.
  • Data scientist — uses expert skills in technology and social science to find trends through data analysis and develop models and AI to predict future results.
  • Data specialist — organizes or converts data for use in databases or software systems.
  • Operations analyst — analyzes data to assess the performance of business operations and workflows.

Technically a data analyst can work in any industry, however their are other industry-specific specialist positions that you might come across in your data analyst job search which requires a knowledge in specific domain, those include:

  • Marketing analyst — analyzes market conditions to assess the potential sales of products and services.
  • HR/payroll analyst — analyzes payroll data for inefficiencies and errors.
  • Financial analyst — analyzes financial status by collecting, monitoring, and reviewing data.
  • Risk analyst — analyzes financial documents, economic conditions, and client data to help companies determine the level of risk involved in making a particular business decision.
  • Healthcare analyst — analyzes medical data to improve the business aspect of hospitals and medical facilities.
  • Collecting data from various data sources.
  • Creating queries to extract data from relational databases.
  • Filtering, cleaning, standardizing, transforming and reorganizing data in preparation for data analysis.
  • Assessing data quality.
  • Using statistical tools to interpret data sets. 
  • Using statistical techniques to identify patterns and correlations in data.
  • Analyzing patterns in complex data sets and interpreting trends.
  • Preparing reports and charts that effectively communicate trends and patterns.
  • Creating appropriate documentation to define and demonstrate the steps of the data analysis  process.

There are many great data analytics courses available online, but some of the most highly recommended courses comes from technology leaders in data analytics as following:

  • Google Data Analytics Professional Certificate: available on Coursera with Financial aid support. This course is offered by Google and covers the basics of data analytics, including data cleaning, data wrangling, and data visualization. It’s a great option for beginners who want to learn the fundamentals of data analysis. Get ready to learn about spreadsheets, SQL, BigQuery, R programming and Tableau.

IBM Data Analytics with Excel and R Professional Certificate : available on Coursera with Financial aid support. This course is offered by IBM and covers the basics of data analytics, including data cleaning, data wrangling, and data visualization with introductory into Data Science and building models. It’s a great option for beginners who want to learn the fundamentals of data analysis and data science. Get ready to learn about spreadsheets, SQL, DB2, R programming and IBM Cognos Analytics.

Microsoft Power BI Data Analyst Professional Certificate : available on Coursera with Financial aid support. This course is offered by Microsoft and covers the basics of data analytics, including data cleaning, data wrangling, data modelling and data visualization. Although it provide the basics about Excel however it is build extensively around Power BI and is definitely the best resource if you want to learn Microsoft Power BI.

Tableau Business Intelligence Analyst Professional Certificate : available on Coursera with Financial aid support. This course is offered by Tableau. Although the course is intendent for Business intelligence analyst, however it overlaps a lot with data analytics and is the best resource to learn the ins and outs of Tableau desktop for data visualization.

The best course for you will depend on your experience level and learning goals. If you’re a beginner, then a courses like the Google Data Analytics Professional Certificate or IBM Data Analytics with Excel and R Professional Certificate is a good place to start. If you have some experience with data analysis, then you may want to consider a more specialized course towards a specific tool, such as the Excel, SQL, python or R.

Data analysis is the key to unlocking the hidden potential within your data. By analyzing data effectively, you can make data-driven decisions, improve efficiency, gain a competitive edge, and solve problems. There’s a vast array of data analysis tools to empower you, including spreadsheets, programming languages, business intelligence tools, statistical analysis software, query languages, and data cleaning software.

Stay updated

Signup to get the latest articles in your inbox!

You have successfully joined our subscriber list.

Recent Articles

Top arab countries by foreign direct investment 2023, a complete guide to predictive analytics and its importance, how to connect r to ibm db2: complete guide (rjdbc, rodbc), 14 best resources for learning sql for free, margin of error calculator: fast and effective, related stories, data science vs data analytics: a comprehensive comparison, gestalt principles for data visualization: from chaos to clarity.

  • Privacy Policy

© Copyrights reserved 2024

  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

definition of data analysis in research

Home Market Research

Data Analysis: Definition, Types and Examples

Data analysis

Nowadays, data is collected at various stages of processes and transactions, which has the potential to improve the way we work significantly. However, to fully realize the value of data analysis, this data must be analyzed to gain valuable insights into improving products and services.

Data analysis consists aspect of making informed decisions in various industries. With the advancement of technology, it has become a dynamic and exciting field But what is it in simple words?

What is Data Analysis?

Data analysis is the science of examining data to conclude the information to make decisions or expand knowledge on various subjects. It consists of subjecting data to operations. This process happens to obtain precise conclusions to help us achieve our goals, such as operations that cannot be previously defined since data collection may reveal specific difficulties.

“A lot of this [data analysis] will help humans work smarter and faster because we have data on everything that happens.” –Daniel Burrus, business consultant and speaker on business and innovation issues.

Why is data analytics important?

Data analytics help businesses understand the target market faster, increase sales, reduce costs, increase revenue, and allow for better problem-solving. Data analysis is important for several reasons, as it plays a critical role in various aspects of modern businesses and organizations. Here are some key reasons why data analysis important is crucial:

Informed decision-making

Data analytics helps businesses make more informed and data-driven decisions. By analyzing data, organizations can gain insights into customer behavior, market trends, and operational performance, enabling them to make better choices that are supported by evidence rather than relying on intuition alone.

Identifying opportunities and challenges

Data analytics allows businesses to identify new opportunities for growth, product development, or market expansion. It also helps identify potential challenges and risks, allowing organizations to address them proactively.

Improving efficiency and productivity

Organizations can identify inefficiencies and bottlenecks by analyzing processes and performance data, leading to process optimization and improved productivity. This, in turn, can result in cost savings and better resource allocation.

Customer understanding and personalization

Data analytics enables businesses to understand their customers better, including their preferences, buying behaviors, and pain points. With this understanding, organizations can offer personalized products and services, enhancing customer satisfaction and loyalty.

Competitive advantage

Organizations that leverage data analytics effectively gain a competitive edge in today’s data-driven world. By analyzing data, businesses can identify unique insights and trends that better understand the market and their competitors, helping them stay ahead of the competition.

Performance tracking and evaluation

Data analytics allows organizations to track and measure their performance against key performance indicators (KPIs) and goals. This helps in evaluating the success of various strategies and initiatives, enabling continuous improvement.

Predictive analytics

Data analytics can be used for predictive modeling, helping organizations forecast future trends and outcomes. This is valuable for financial planning, demand forecasting, risk management, and proactive decision-making.

Data-driven innovation

Data analytics can fuel innovation by providing insights that lead to the development of new products, services, or business models. Innovations based on data analysis can lead to groundbreaking advancements and disruption in various industries.

Fraud detection and security

Data analytics can be used to detect anomalies and patterns indicative of fraudulent activities. It plays a crucial role in enhancing security and protecting businesses from financial losses and reputational risk .

Regulatory compliance

In many industries, regulations, and laws are mandatory. Data analytics can help organizations ensure that they meet these compliance requirements by tracking and auditing relevant data.

Types of data analysis

There are several types of data analysis, each with a specific purpose and method. Let’s talk about some significant types:

definition of data analysis in research

Descriptive Analysis

Descriptive analysis is used to summarize and describe the main features of a dataset. It involves calculating measures of central tendency and dispersion to describe the data. The descriptive analysis provides a comprehensive overview of the data and insights into its properties and structure.

LEARN ABOUT: Descriptive Analysis

Inferential Analysis

The inferential analysis is used statistical analysis plan and testing to make inferences about the population parameters, such as the mean or proportion. This unit of analysis involves using models and hypothesis testing to make predictions and draw conclusions about the population.

LEARN ABOUT:   Statistical Analysis Methods

Predictive Analysis

Predictive analysis is used to predict future events or outcomes based on historical data and other relevant information. It involves using statistical models and machine learning algorithms to identify patterns in the data and make predictions about future outcomes.

Prescriptive Analysis

Prescriptive analysis is a decision-making analysis that uses mathematical modeling, optimization algorithms, and other data-driven techniques to identify the action for a given problem or situation. It combines mathematical models, data, and business constraints to find the best move or decision.

Text Analysis

Text analysis is a process of extracting meaningful information from unstructured text data. It involves a variety of techniques, including natural language processing (NLP), text mining, sentiment analysis, and topic modeling, to uncover insights and patterns in text data.

Diagnostic Analysis

The diagnostic analysis seeks to identify the root causes of specific events or outcomes. It is often used in troubleshooting problems or investigating anomalies in data.

LEARN ABOUT: Data Analytics Projects

Uses of data analysis

It is used in many industries regardless of the branch. It gives us the basis for making decisions or confirming a hypothesis.

A researcher or data analyst mainly performs data analysis to predict consumer behavior and help companies place their products and services in the market accordingly. For instance, sales data analysis can help you identify the product range not-so-popular in a specific demographic group. It can give you insights into tweaking your current marketing campaign to better connect with the target audience and address their needs. 

Human Resources

Organizations can use data analysis tools to offer a great experience to their employees and ensure an excellent work environment. They can also utilize the data to find out the best resources whose skill set matches the organizational goals.

Universities and academic institutions can perform the analysis to measure student performance and gather insights on how certain behaviors can further improve education.

Techniques for data analysis

It is essential to analyze raw data to understand it. We must resort to various data analysis techniques that depend on the type of information collected, so it is crucial to define the method before implementing it.

  • Qualitative data: Researchers collect qualitative data from the underlying emotions, body language, and expressions. Its foundation is the data interpretation of verbal responses. The most common ways of obtaining this information are through open-ended interviews, focus groups, and observation groups, where researchers generally analyze patterns in observations throughout the data collection phase.
  • Quantitative data: Quantitative data presents itself in numerical form. It focuses on tangible results.

Data analysis focuses on reaching a conclusion based solely on the researcher’s current knowledge. How you collect your data should relate to how you plan to analyze and use it. You also need to collect accurate and trustworthy information. 

Many data collection techniques exist, but experts’ most commonly used method is online surveys. It offers significant benefits, such as reducing time and money compared to traditional data collection methods .

Data analysis and data analytics are two interconnected but distinct processes in data science. Data analysis involves examining raw data using various techniques to uncover patterns, correlations, and insights. It’s about understanding historical data to make informed conclusions. On the other hand, data analytics goes a step further by utilizing those insights to predict future trends, prescribe actions, and guide decision-making.

At QuestionPro, we have an accurate tool that will help you professionally make better decisions.

Data Analysis Methods

The term data analysis technique has often been used interchangeably by professional researchers. Frequently people also throw out the previous analysis type. We’re hoping for this to be an important distinction between how and when data analyses are done. 

However, there are many different techniques that allow for data analysis. Here are some of the main common methods used for data analysis:

Descriptive Statistics

Descriptive statistics involves summarizing and describing the main features of a dataset, such as mean, median, mode, standard deviation, range, and percentiles. It provides a basic understanding of the data’s distribution and characteristics.

Inferential Statistics

Inferential statistics are used to make inferences and draw conclusions about a larger population based on a sample of data. It includes techniques like hypothesis testing, confidence intervals, and regression analysis.

Data Visualization

Data visualization is the graphical representation of data to help analysts and stakeholders understand patterns, trends, and insights. Common visualization techniques include bar charts, line graphs, scatter plots, heat maps, and pie charts.

Exploratory Data Analysis (EDA)

EDA involves analyzing and visualizing data to discover patterns, relationships, and potential outliers. It helps in gaining insights into the data before formal statistical testing.

Predictive Modeling

Predictive modeling uses algorithms and statistical techniques to build models that can make predictions about future outcomes based on historical data. Machine learning algorithms, such as decision trees, logistic regression, and neural networks, are commonly used for predictive modeling.

Time Series Analysis

Time series analysis is used to analyze data collected over time, such as stock prices, temperature readings, or sales data. It involves identifying trends and seasonality and forecasting future values.

Cluster Analysis

Cluster analysis is used to group similar data points together based on certain features or characteristics. It helps in identifying patterns and segmenting data into meaningful clusters.

Factor Analysis and Principal Component Analysis (PCA)

These techniques are used to reduce the dimensionality of data and identify underlying factors or components that explain the variance in the data.

Text Mining and Natural Language Processing (NLP)

Text mining and NLP techniques are used to analyze and extract information from unstructured text data, such as social media posts, customer reviews, or survey responses.

Qualitative Data Analysis

Qualitative data analysis involves interpreting non-numeric data, such as text, images, audio, or video. Techniques like content analysis, thematic analysis, and grounded theory are used to analyze qualitative data.

Quantitative Data Analysis

Quantitative analysis focuses on analyzing numerical data to discover relationships, trends, and patterns. This analysis often involves statistical methods.

Data Mining

Data mining involves discovering patterns, relationships, or insights from large datasets using various algorithms and techniques.

Regression Analysis

Regression analysis is used to model the relationship between a dependent variable and one or more independent variables. It helps understand how changes in one variable impact the other(s).

Step-by-step guide data analysis

With these five steps in your data analysis process, you will make better decisions for your business because data that has been well collected and analyzed support your choices.

LEARN ABOUT: Data Mining Techniques

steps to data analysis

Step 1: Define your questions

Start by selecting the right questions. Questions should be measurable, clear, and concise. Design your questions to qualify or disqualify possible solutions to your specific problem.

Step 2: Establish measurement priorities

This step divides into two sub-steps:

  • Decide what to measure: Analyze what kind of data you need.
  • Decide how to measure it: Thinking about how to measure your data is just as important, especially before the data collection phase, because your measurement process supports or discredits your thematic analysis later on.

Step 3: Collect data

With the question clearly defined and your measurement priorities established, now it’s time to collect your data. As you manage and organize your data, remember to keep these essential points in mind:

  • Before collecting new data, determine what information you could gather from existing databases or sources.
  • Determine a storage and file naming system to help all team members collaborate in advance. This process saves time and prevents team members from collecting the same information twice.
  • If you need to collect data through surveys, observation, or interviews, develop a questionnaire in advance to ensure consistency and save time.
  • Keep the collected data organized with a log of collection dates, and add any source notes as you go along.

Step 4: Analyze the data

Once you’ve collected the correct data to answer your Step 1 question, it’s time to conduct a deeper statistical analysis . Find relationships, identify trends, and sort and filter your data according to variables. You will find the exact data you need as you analyze the data.

Step 5: Interpret the results

After analyzing the data and possibly conducting further research, it is finally time to interpret the results. Ask yourself these key questions:

  • Does the data answer your original question? How?
  • Does the data help you defend any objections? How?
  • Are there any limitations to the conclusions, any angles you haven’t considered?

If the interpretation of data holds up under these questions and considerations, you have reached a productive conclusion. The only remaining step is to use the process results to decide how you will act.

Join us as we look into the most frequently used question types and how to analyze your findings effectively.

Make the right decisions by analyzing data the right way!

Data analysis advantages

Many industries use data to draw conclusions and decide on actions to implement. It is worth mentioning that science also uses to test or discard existing theories or models.

There’s more than one advantage to data analysis done right. Here are some examples:

data analysis advantages

  • Make faster and more informed business decisions backed by facts.
  • Identify performance issues that require action.
  • Gain a deeper understanding of customer requirements, which creates better business relationships.
  • Increase awareness of risks to implement preventive measures.
  • Visualize different dimensions of the data.
  • Gain competitive advantage.
  • A better understanding of the financial performance of the business.
  • Identify ways to reduce costs and thus increase profits.

These questions are examples of different types of data analysis. You can include them in your post-event surveys aimed at your customers:

  • Questions start with: Why? How? 

Example of qualitative data research analysis: Panels where a discussion is held, and consumers are interviewed about what they like or dislike about the place.

  • Data is collected by asking questions like: How many? Who? How often? Where?

Example of quantitative research analysis: Surveys focused on measuring sales, trends, reports, or perceptions.

Data analysis with QuestionPro

Data analysis is crucial in aiding organizations and individuals in making informed decisions by comprehensively understanding the data. If you’re in need of various data analysis techniques solutions, consider using QuestionPro. Our software allows you to collect data easily, create real-time reports, and analyze data. Practical business intelligence relies on the synergy between analytics and reporting , where analytics uncovers valuable insights, and reporting communicates these findings to stakeholders.

LEARN ABOUT: Average Order Value

Start a free trial or schedule a demo to see the full potential of our powerful tool. We’re here to help you every step of the way!

LEARN MORE         FREE TRIAL

MORE LIKE THIS

Stay conversations

Stay Conversations: What Is It, How to Use, Questions to Ask

Aug 26, 2024

age gating

Age Gating: Effective Strategies for Online Content Control

Aug 23, 2024

Work-life balance

Work-Life Balance: Why We Need it & How to Improve It

Aug 22, 2024

Organizational MEMORY

Organizational Memory: Strategies for Success and Continuity

Aug 21, 2024

Other categories

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

Guru99

What is Data Analysis? Research, Types & Example

Evelyn Clarke

What is Data Analysis?

Data analysis is defined as a process of cleaning, transforming, and modeling data to discover useful information for business decision-making. The purpose of Data Analysis is to extract useful information from data and taking the decision based upon the data analysis.

A simple example of Data analysis is whenever we take any decision in our day-to-day life is by thinking about what happened last time or what will happen by choosing that particular decision. This is nothing but analyzing our past or future and making decisions based on it. For that, we gather memories of our past or dreams of our future. So that is nothing but data analysis. Now same thing analyst does for business purposes, is called Data Analysis.

In this Data Science Tutorial, you will learn:

Why Data Analysis?

To grow your business even to grow in your life, sometimes all you need to do is Analysis!

If your business is not growing, then you have to look back and acknowledge your mistakes and make a plan again without repeating those mistakes. And even if your business is growing, then you have to look forward to making the business to grow more. All you need to do is analyze your business data and business processes.

Data Analysis Tools

Data Analysis Tools

Data analysis tools make it easier for users to process and manipulate data, analyze the relationships and correlations between data sets, and it also helps to identify patterns and trends for interpretation. Here is a complete list of tools used for data analysis in research.

Types of Data Analysis: Techniques and Methods

There are several types of Data Analysis techniques that exist based on business and technology. However, the major Data Analysis methods are:

Text Analysis

Statistical analysis, diagnostic analysis, predictive analysis, prescriptive analysis.

Text Analysis is also referred to as Data Mining. It is one of the methods of data analysis to discover a pattern in large data sets using databases or data mining tools . It used to transform raw data into business information. Business Intelligence tools are present in the market which is used to take strategic business decisions. Overall it offers a way to extract and examine data and deriving patterns and finally interpretation of the data.

Statistical Analysis shows “What happen?” by using past data in the form of dashboards. Statistical Analysis includes collection, Analysis, interpretation, presentation, and modeling of data. It analyses a set of data or a sample of data. There are two categories of this type of Analysis – Descriptive Analysis and Inferential Analysis.

Descriptive Analysis

analyses complete data or a sample of summarized numerical data. It shows mean and deviation for continuous data whereas percentage and frequency for categorical data.

Inferential Analysis

analyses sample from complete data. In this type of Analysis, you can find different conclusions from the same data by selecting different samples.

  • 40+ Best Data Science Courses Online with Certification in 2024
  • SAS Tutorial for Beginners: What is & Programming Example
  • What is Data Science? Introduction, Basic Concepts & Process

Diagnostic Analysis shows “Why did it happen?” by finding the cause from the insight found in Statistical Analysis. This Analysis is useful to identify behavior patterns of data. If a new problem arrives in your business process, then you can look into this Analysis to find similar patterns of that problem. And it may have chances to use similar prescriptions for the new problems.

Predictive Analysis shows “what is likely to happen” by using previous data. The simplest data analysis example is like if last year I bought two dresses based on my savings and if this year my salary is increasing double then I can buy four dresses. But of course it’s not easy like this because you have to think about other circumstances like chances of prices of clothes is increased this year or maybe instead of dresses you want to buy a new bike, or you need to buy a house!

So here, this Analysis makes predictions about future outcomes based on current or past data. Forecasting is just an estimate. Its accuracy is based on how much detailed information you have and how much you dig in it.

Prescriptive Analysis combines the insight from all previous Analysis to determine which action to take in a current problem or decision. Most data-driven companies are utilizing Prescriptive Analysis because predictive and descriptive Analysis are not enough to improve data performance. Based on current situations and problems, they analyze the data and make decisions.

Data Analysis Process

The Data Analysis Process is nothing but gathering information by using a proper application or tool which allows you to explore the data and find a pattern in it. Based on that information and data, you can make decisions, or you can get ultimate conclusions.

Data Analysis consists of the following phases:

Data Requirement Gathering

Data collection, data cleaning, data analysis, data interpretation, data visualization.

First of all, you have to think about why do you want to do this data analysis? All you need to find out the purpose or aim of doing the Analysis of data. You have to decide which type of data analysis you wanted to do! In this phase, you have to decide what to analyze and how to measure it, you have to understand why you are investigating and what measures you have to use to do this Analysis.

After requirement gathering, you will get a clear idea about what things you have to measure and what should be your findings. Now it’s time to collect your data based on requirements. Once you collect your data, remember that the collected data must be processed or organized for Analysis. As you collected data from various sources, you must have to keep a log with a collection date and source of the data.

Now whatever data is collected may not be useful or irrelevant to your aim of Analysis, hence it should be cleaned. The data which is collected may contain duplicate records, white spaces or errors. The data should be cleaned and error free. This phase must be done before Analysis because based on data cleaning, your output of Analysis will be closer to your expected outcome.

Once the data is collected, cleaned, and processed, it is ready for Analysis. As you manipulate data, you may find you have the exact information you need, or you might need to collect more data. During this phase, you can use data analysis tools and software which will help you to understand, interpret, and derive conclusions based on the requirements.

After analyzing your data, it’s finally time to interpret your results. You can choose the way to express or communicate your data analysis either you can use simply in words or maybe a table or chart. Then use the results of your data analysis process to decide your best course of action.

Data visualization is very common in your day to day life; they often appear in the form of charts and graphs. In other words, data shown graphically so that it will be easier for the human brain to understand and process it. Data visualization often used to discover unknown facts and trends. By observing relationships and comparing datasets, you can find a way to find out meaningful information.

  • Data analysis means a process of cleaning, transforming and modeling data to discover useful information for business decision-making
  • Types of Data Analysis are Text, Statistical, Diagnostic, Predictive, Prescriptive Analysis
  • Data Analysis consists of Data Requirement Gathering, Data Collection, Data Cleaning, Data Analysis, Data Interpretation, Data Visualization

Market Business News

What is Data Analysis? Definition and Examples

Data Analysis is the process of examining, cleaning, transforming, and modeling data to uncover useful information, make informed decisions, and support conclusions. If you work with data, whether in business, research, or everyday life, you are likely engaged in data analysis without even realizing it.

Coursera.com has the following definition of data analysis:

“Data analysis is the practice of working with data to glean useful information, which can then be used to make informed decisions. When we can extract meaning from data, it empowers us to make better decisions. And we’re living in a time when we have more data than ever at our fingertips.”

Meanings of “Data” & “Analysis”

Before we continue, let’s take a closer look at the meanings of the words “data” and “analysis” in isolation:

Data is information such as facts, figures, measurements, amounts, trends, and dimensions that we collect for reference, analysis, and to help us plan for the future.

Analysis is the process of examining and interpreting data or information to draw conclusions and make informed decisions.

Many illustrations depicting the concept of Data Analysis.

Data Analysis – Key Steps

Fundamentally, data analysis involves several key steps.

First, you collect data, which could come from various sources such as surveys, sales records, or online interactions.

Once you have the data, the next step is to clean it. This means removing any errors, duplicates, or irrelevant information that might distort your analysis.

After cleaning the data, the next step is to explore it. During this phase, you might use statistical tools or software to look for patterns, trends, or relationships within the data.

For instance, if you run a business, you might analyze customer purchase history to identify which products are the most popular or which times of year see the highest sales.

Transforming

Once you have explored the data, the next step is to transform it. This involves organizing the data in a way that makes it easier to analyze.

For example, you might group data by time, location, or customer type. By transforming the data, you can start to draw meaningful insights that can help guide your decisions.

The final step in data analysis is modeling, where you apply mathematical or statistical models to the data to predict outcomes or test hypotheses.

For example, if you are a marketer, you might use data modeling to predict how a change in advertising strategy could impact sales. This step allows you to forecast future trends and make data-driven decisions with greater confidence.

Data Analysis Helps You Gain Insights

Data analysis is crucial in today’s data-driven world. By analyzing data, you can gain insights that help you develop a better understanding of your business, customers, or any area you are interested in.

Whether you are looking to improve your company’s performance, optimize operations, or simply make better decisions, data analysis provides the tools you need to achieve your goals.

Data Analysis – Brief History

The concept of data analysis has deep historical roots, with early forms dating back to the 17th century when figures like John Graunt (1620-1674), an English haberdasher who is known today as the ‘father of demography,’ analyzed population statistics.

However, the modern concept began to take shape in the 20th century, particularly with the development of statistical methods and computing technology.

John Tukey (1915-2000), an influential American mathematician and statistician, is often credited with popularizing the term “data analysis” in the 1960s. His 1962 paper , “The Future of Data Analysis,” helped establish it as a distinct field within statistics.

The term started to gain widespread attention in the 1960s and 1970s, especially as computers enabled more complex analyses.

By the 1980s and 1990s, data analysis became a critical function in business and research, and with the explosion of digital data in the 2000s, it became an essential practice across various industries.

Other Compound Nouns

In business English, there are many compound nouns that include the word ‘analysis.’ A compound noun is a term made up of two or more words. ‘Data analysis’ is one such example. Let’s take a look at ten other compound nouns that end with ‘analysis’:

Trend Analysis

Examining data over time to identify patterns or trends that can guide future decisions.

Risk Analysis

Assessing potential risks in a project or decision to determine their impact and likelihood.

Market Analysis

Evaluating market conditions to understand demand, competition, and customer behavior.

Financial Analysis

Analyzing financial data to assess the health and performance of a business.

Cost Analysis

Determining the costs associated with a project or operation to evaluate profitability.

SWOT Analysis

Identifying strengths, weaknesses, opportunities, and threats related to a business or project. SWOT stands for Strengths, Weaknesses, Opportunities, and Threats.

Performance Analysis

Measuring and evaluating the effectiveness or efficiency of a process, team, or individual.

Regression Analysis

A statistical method used to understand the relationship between variables, often to predict future outcomes.

Impact Analysis

Assessing the effects or consequences of a particular action or decision.

PEST Analysis

A study that helps companies identify threats and opportunities. Specifically, threats and opportunities related to uncontrollable external factors. PEST stands for P olitical, E conomic, S ocial, and T echnological.

Sentiment Analysis

Using data to determine the emotional tone behind words, often in social media or customer feedback.

Final Thoughts

Data analysis is the process of examining and transforming data to uncover valuable insights.

It involves several key steps:

  • Collecting data from various sources.
  • Cleaning it to remove errors.
  • Exploring it to identify patterns and trends.
  • Transforming it for easier analysis.
  • Modeling it to predict outcomes.

These steps enable you to make informed decisions and achieve better results.

Whether you’re aiming to understand your business, optimize operations, or make data-driven predictions, mastering data analysis gives you the tools to leverage the information at your disposal effectively.

Share this:

  • Renewable Energy
  • Artificial Intelligence
  • 3D Printing
  • Financial Glossary

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base

The Beginner's Guide to Statistical Analysis | 5 Steps & Examples

Statistical analysis means investigating trends, patterns, and relationships using quantitative data . It is an important research tool used by scientists, governments, businesses, and other organizations.

To draw valid conclusions, statistical analysis requires careful planning from the very start of the research process . You need to specify your hypotheses and make decisions about your research design, sample size, and sampling procedure.

After collecting data from your sample, you can organize and summarize the data using descriptive statistics . Then, you can use inferential statistics to formally test hypotheses and make estimates about the population. Finally, you can interpret and generalize your findings.

This article is a practical introduction to statistical analysis for students and researchers. We’ll walk you through the steps using two research examples. The first investigates a potential cause-and-effect relationship, while the second investigates a potential correlation between variables.

Table of contents

Step 1: write your hypotheses and plan your research design, step 2: collect data from a sample, step 3: summarize your data with descriptive statistics, step 4: test hypotheses or make estimates with inferential statistics, step 5: interpret your results, other interesting articles.

To collect valid data for statistical analysis, you first need to specify your hypotheses and plan out your research design.

Writing statistical hypotheses

The goal of research is often to investigate a relationship between variables within a population . You start with a prediction, and use statistical analysis to test that prediction.

A statistical hypothesis is a formal way of writing a prediction about a population. Every research prediction is rephrased into null and alternative hypotheses that can be tested using sample data.

While the null hypothesis always predicts no effect or no relationship between variables, the alternative hypothesis states your research prediction of an effect or relationship.

  • Null hypothesis: A 5-minute meditation exercise will have no effect on math test scores in teenagers.
  • Alternative hypothesis: A 5-minute meditation exercise will improve math test scores in teenagers.
  • Null hypothesis: Parental income and GPA have no relationship with each other in college students.
  • Alternative hypothesis: Parental income and GPA are positively correlated in college students.

Planning your research design

A research design is your overall strategy for data collection and analysis. It determines the statistical tests you can use to test your hypothesis later on.

First, decide whether your research will use a descriptive, correlational, or experimental design. Experiments directly influence variables, whereas descriptive and correlational studies only measure variables.

  • In an experimental design , you can assess a cause-and-effect relationship (e.g., the effect of meditation on test scores) using statistical tests of comparison or regression.
  • In a correlational design , you can explore relationships between variables (e.g., parental income and GPA) without any assumption of causality using correlation coefficients and significance tests.
  • In a descriptive design , you can study the characteristics of a population or phenomenon (e.g., the prevalence of anxiety in U.S. college students) using statistical tests to draw inferences from sample data.

Your research design also concerns whether you’ll compare participants at the group level or individual level, or both.

  • In a between-subjects design , you compare the group-level outcomes of participants who have been exposed to different treatments (e.g., those who performed a meditation exercise vs those who didn’t).
  • In a within-subjects design , you compare repeated measures from participants who have participated in all treatments of a study (e.g., scores from before and after performing a meditation exercise).
  • In a mixed (factorial) design , one variable is altered between subjects and another is altered within subjects (e.g., pretest and posttest scores from participants who either did or didn’t do a meditation exercise).
  • Experimental
  • Correlational

First, you’ll take baseline test scores from participants. Then, your participants will undergo a 5-minute meditation exercise. Finally, you’ll record participants’ scores from a second math test.

In this experiment, the independent variable is the 5-minute meditation exercise, and the dependent variable is the math test score from before and after the intervention. Example: Correlational research design In a correlational study, you test whether there is a relationship between parental income and GPA in graduating college students. To collect your data, you will ask participants to fill in a survey and self-report their parents’ incomes and their own GPA.

Measuring variables

When planning a research design, you should operationalize your variables and decide exactly how you will measure them.

For statistical analysis, it’s important to consider the level of measurement of your variables, which tells you what kind of data they contain:

  • Categorical data represents groupings. These may be nominal (e.g., gender) or ordinal (e.g. level of language ability).
  • Quantitative data represents amounts. These may be on an interval scale (e.g. test score) or a ratio scale (e.g. age).

Many variables can be measured at different levels of precision. For example, age data can be quantitative (8 years old) or categorical (young). If a variable is coded numerically (e.g., level of agreement from 1–5), it doesn’t automatically mean that it’s quantitative instead of categorical.

Identifying the measurement level is important for choosing appropriate statistics and hypothesis tests. For example, you can calculate a mean score with quantitative data, but not with categorical data.

In a research study, along with measures of your variables of interest, you’ll often collect data on relevant participant characteristics.

Variable Type of data
Age Quantitative (ratio)
Gender Categorical (nominal)
Race or ethnicity Categorical (nominal)
Baseline test scores Quantitative (interval)
Final test scores Quantitative (interval)
Parental income Quantitative (ratio)
GPA Quantitative (interval)

Receive feedback on language, structure, and formatting

Professional editors proofread and edit your paper by focusing on:

  • Academic style
  • Vague sentences
  • Style consistency

See an example

definition of data analysis in research

In most cases, it’s too difficult or expensive to collect data from every member of the population you’re interested in studying. Instead, you’ll collect data from a sample.

Statistical analysis allows you to apply your findings beyond your own sample as long as you use appropriate sampling procedures . You should aim for a sample that is representative of the population.

Sampling for statistical analysis

There are two main approaches to selecting a sample.

  • Probability sampling: every member of the population has a chance of being selected for the study through random selection.
  • Non-probability sampling: some members of the population are more likely than others to be selected for the study because of criteria such as convenience or voluntary self-selection.

In theory, for highly generalizable findings, you should use a probability sampling method. Random selection reduces several types of research bias , like sampling bias , and ensures that data from your sample is actually typical of the population. Parametric tests can be used to make strong statistical inferences when data are collected using probability sampling.

But in practice, it’s rarely possible to gather the ideal sample. While non-probability samples are more likely to at risk for biases like self-selection bias , they are much easier to recruit and collect data from. Non-parametric tests are more appropriate for non-probability samples, but they result in weaker inferences about the population.

If you want to use parametric tests for non-probability samples, you have to make the case that:

  • your sample is representative of the population you’re generalizing your findings to.
  • your sample lacks systematic bias.

Keep in mind that external validity means that you can only generalize your conclusions to others who share the characteristics of your sample. For instance, results from Western, Educated, Industrialized, Rich and Democratic samples (e.g., college students in the US) aren’t automatically applicable to all non-WEIRD populations.

If you apply parametric tests to data from non-probability samples, be sure to elaborate on the limitations of how far your results can be generalized in your discussion section .

Create an appropriate sampling procedure

Based on the resources available for your research, decide on how you’ll recruit participants.

  • Will you have resources to advertise your study widely, including outside of your university setting?
  • Will you have the means to recruit a diverse sample that represents a broad population?
  • Do you have time to contact and follow up with members of hard-to-reach groups?

Your participants are self-selected by their schools. Although you’re using a non-probability sample, you aim for a diverse and representative sample. Example: Sampling (correlational study) Your main population of interest is male college students in the US. Using social media advertising, you recruit senior-year male college students from a smaller subpopulation: seven universities in the Boston area.

Calculate sufficient sample size

Before recruiting participants, decide on your sample size either by looking at other studies in your field or using statistics. A sample that’s too small may be unrepresentative of the sample, while a sample that’s too large will be more costly than necessary.

There are many sample size calculators online. Different formulas are used depending on whether you have subgroups or how rigorous your study should be (e.g., in clinical research). As a rule of thumb, a minimum of 30 units or more per subgroup is necessary.

To use these calculators, you have to understand and input these key components:

  • Significance level (alpha): the risk of rejecting a true null hypothesis that you are willing to take, usually set at 5%.
  • Statistical power : the probability of your study detecting an effect of a certain size if there is one, usually 80% or higher.
  • Expected effect size : a standardized indication of how large the expected result of your study will be, usually based on other similar studies.
  • Population standard deviation: an estimate of the population parameter based on a previous study or a pilot study of your own.

Once you’ve collected all of your data, you can inspect them and calculate descriptive statistics that summarize them.

Inspect your data

There are various ways to inspect your data, including the following:

  • Organizing data from each variable in frequency distribution tables .
  • Displaying data from a key variable in a bar chart to view the distribution of responses.
  • Visualizing the relationship between two variables using a scatter plot .

By visualizing your data in tables and graphs, you can assess whether your data follow a skewed or normal distribution and whether there are any outliers or missing data.

A normal distribution means that your data are symmetrically distributed around a center where most values lie, with the values tapering off at the tail ends.

Mean, median, mode, and standard deviation in a normal distribution

In contrast, a skewed distribution is asymmetric and has more values on one end than the other. The shape of the distribution is important to keep in mind because only some descriptive statistics should be used with skewed distributions.

Extreme outliers can also produce misleading statistics, so you may need a systematic approach to dealing with these values.

Calculate measures of central tendency

Measures of central tendency describe where most of the values in a data set lie. Three main measures of central tendency are often reported:

  • Mode : the most popular response or value in the data set.
  • Median : the value in the exact middle of the data set when ordered from low to high.
  • Mean : the sum of all values divided by the number of values.

However, depending on the shape of the distribution and level of measurement, only one or two of these measures may be appropriate. For example, many demographic characteristics can only be described using the mode or proportions, while a variable like reaction time may not have a mode at all.

Calculate measures of variability

Measures of variability tell you how spread out the values in a data set are. Four main measures of variability are often reported:

  • Range : the highest value minus the lowest value of the data set.
  • Interquartile range : the range of the middle half of the data set.
  • Standard deviation : the average distance between each value in your data set and the mean.
  • Variance : the square of the standard deviation.

Once again, the shape of the distribution and level of measurement should guide your choice of variability statistics. The interquartile range is the best measure for skewed distributions, while standard deviation and variance provide the best information for normal distributions.

Using your table, you should check whether the units of the descriptive statistics are comparable for pretest and posttest scores. For example, are the variance levels similar across the groups? Are there any extreme values? If there are, you may need to identify and remove extreme outliers in your data set or transform your data before performing a statistical test.

Pretest scores Posttest scores
Mean 68.44 75.25
Standard deviation 9.43 9.88
Variance 88.96 97.96
Range 36.25 45.12
30

From this table, we can see that the mean score increased after the meditation exercise, and the variances of the two scores are comparable. Next, we can perform a statistical test to find out if this improvement in test scores is statistically significant in the population. Example: Descriptive statistics (correlational study) After collecting data from 653 students, you tabulate descriptive statistics for annual parental income and GPA.

It’s important to check whether you have a broad range of data points. If you don’t, your data may be skewed towards some groups more than others (e.g., high academic achievers), and only limited inferences can be made about a relationship.

Parental income (USD) GPA
Mean 62,100 3.12
Standard deviation 15,000 0.45
Variance 225,000,000 0.16
Range 8,000–378,000 2.64–4.00
653

A number that describes a sample is called a statistic , while a number describing a population is called a parameter . Using inferential statistics , you can make conclusions about population parameters based on sample statistics.

Researchers often use two main methods (simultaneously) to make inferences in statistics.

  • Estimation: calculating population parameters based on sample statistics.
  • Hypothesis testing: a formal process for testing research predictions about the population using samples.

You can make two types of estimates of population parameters from sample statistics:

  • A point estimate : a value that represents your best guess of the exact parameter.
  • An interval estimate : a range of values that represent your best guess of where the parameter lies.

If your aim is to infer and report population characteristics from sample data, it’s best to use both point and interval estimates in your paper.

You can consider a sample statistic a point estimate for the population parameter when you have a representative sample (e.g., in a wide public opinion poll, the proportion of a sample that supports the current government is taken as the population proportion of government supporters).

There’s always error involved in estimation, so you should also provide a confidence interval as an interval estimate to show the variability around a point estimate.

A confidence interval uses the standard error and the z score from the standard normal distribution to convey where you’d generally expect to find the population parameter most of the time.

Hypothesis testing

Using data from a sample, you can test hypotheses about relationships between variables in the population. Hypothesis testing starts with the assumption that the null hypothesis is true in the population, and you use statistical tests to assess whether the null hypothesis can be rejected or not.

Statistical tests determine where your sample data would lie on an expected distribution of sample data if the null hypothesis were true. These tests give two main outputs:

  • A test statistic tells you how much your data differs from the null hypothesis of the test.
  • A p value tells you the likelihood of obtaining your results if the null hypothesis is actually true in the population.

Statistical tests come in three main varieties:

  • Comparison tests assess group differences in outcomes.
  • Regression tests assess cause-and-effect relationships between variables.
  • Correlation tests assess relationships between variables without assuming causation.

Your choice of statistical test depends on your research questions, research design, sampling method, and data characteristics.

Parametric tests

Parametric tests make powerful inferences about the population based on sample data. But to use them, some assumptions must be met, and only some types of variables can be used. If your data violate these assumptions, you can perform appropriate data transformations or use alternative non-parametric tests instead.

A regression models the extent to which changes in a predictor variable results in changes in outcome variable(s).

  • A simple linear regression includes one predictor variable and one outcome variable.
  • A multiple linear regression includes two or more predictor variables and one outcome variable.

Comparison tests usually compare the means of groups. These may be the means of different groups within a sample (e.g., a treatment and control group), the means of one sample group taken at different times (e.g., pretest and posttest scores), or a sample mean and a population mean.

  • A t test is for exactly 1 or 2 groups when the sample is small (30 or less).
  • A z test is for exactly 1 or 2 groups when the sample is large.
  • An ANOVA is for 3 or more groups.

The z and t tests have subtypes based on the number and types of samples and the hypotheses:

  • If you have only one sample that you want to compare to a population mean, use a one-sample test .
  • If you have paired measurements (within-subjects design), use a dependent (paired) samples test .
  • If you have completely separate measurements from two unmatched groups (between-subjects design), use an independent (unpaired) samples test .
  • If you expect a difference between groups in a specific direction, use a one-tailed test .
  • If you don’t have any expectations for the direction of a difference between groups, use a two-tailed test .

The only parametric correlation test is Pearson’s r . The correlation coefficient ( r ) tells you the strength of a linear relationship between two quantitative variables.

However, to test whether the correlation in the sample is strong enough to be important in the population, you also need to perform a significance test of the correlation coefficient, usually a t test, to obtain a p value. This test uses your sample size to calculate how much the correlation coefficient differs from zero in the population.

You use a dependent-samples, one-tailed t test to assess whether the meditation exercise significantly improved math test scores. The test gives you:

  • a t value (test statistic) of 3.00
  • a p value of 0.0028

Although Pearson’s r is a test statistic, it doesn’t tell you anything about how significant the correlation is in the population. You also need to test whether this sample correlation coefficient is large enough to demonstrate a correlation in the population.

A t test can also determine how significantly a correlation coefficient differs from zero based on sample size. Since you expect a positive correlation between parental income and GPA, you use a one-sample, one-tailed t test. The t test gives you:

  • a t value of 3.08
  • a p value of 0.001

Prevent plagiarism. Run a free check.

The final step of statistical analysis is interpreting your results.

Statistical significance

In hypothesis testing, statistical significance is the main criterion for forming conclusions. You compare your p value to a set significance level (usually 0.05) to decide whether your results are statistically significant or non-significant.

Statistically significant results are considered unlikely to have arisen solely due to chance. There is only a very low chance of such a result occurring if the null hypothesis is true in the population.

This means that you believe the meditation intervention, rather than random factors, directly caused the increase in test scores. Example: Interpret your results (correlational study) You compare your p value of 0.001 to your significance threshold of 0.05. With a p value under this threshold, you can reject the null hypothesis. This indicates a statistically significant correlation between parental income and GPA in male college students.

Note that correlation doesn’t always mean causation, because there are often many underlying factors contributing to a complex variable like GPA. Even if one variable is related to another, this may be because of a third variable influencing both of them, or indirect links between the two variables.

Effect size

A statistically significant result doesn’t necessarily mean that there are important real life applications or clinical outcomes for a finding.

In contrast, the effect size indicates the practical significance of your results. It’s important to report effect sizes along with your inferential statistics for a complete picture of your results. You should also report interval estimates of effect sizes if you’re writing an APA style paper .

With a Cohen’s d of 0.72, there’s medium to high practical significance to your finding that the meditation exercise improved test scores. Example: Effect size (correlational study) To determine the effect size of the correlation coefficient, you compare your Pearson’s r value to Cohen’s effect size criteria.

Decision errors

Type I and Type II errors are mistakes made in research conclusions. A Type I error means rejecting the null hypothesis when it’s actually true, while a Type II error means failing to reject the null hypothesis when it’s false.

You can aim to minimize the risk of these errors by selecting an optimal significance level and ensuring high power . However, there’s a trade-off between the two errors, so a fine balance is necessary.

Frequentist versus Bayesian statistics

Traditionally, frequentist statistics emphasizes null hypothesis significance testing and always starts with the assumption of a true null hypothesis.

However, Bayesian statistics has grown in popularity as an alternative approach in the last few decades. In this approach, you use previous research to continually update your hypotheses based on your expectations and observations.

Bayes factor compares the relative strength of evidence for the null versus the alternative hypothesis rather than making a conclusion about rejecting the null hypothesis or not.

If you want to know more about statistics , methodology , or research bias , make sure to check out some of our other articles with explanations and examples.

  • Student’s  t -distribution
  • Normal distribution
  • Null and Alternative Hypotheses
  • Chi square tests
  • Confidence interval

Methodology

  • Cluster sampling
  • Stratified sampling
  • Data cleansing
  • Reproducibility vs Replicability
  • Peer review
  • Likert scale

Research bias

  • Implicit bias
  • Framing effect
  • Cognitive bias
  • Placebo effect
  • Hawthorne effect
  • Hostile attribution bias
  • Affect heuristic

Is this article helpful?

Other students also liked.

  • Descriptive Statistics | Definitions, Types, Examples
  • Inferential Statistics | An Easy Introduction & Examples
  • Choosing the Right Statistical Test | Types & Examples

More interesting articles

  • Akaike Information Criterion | When & How to Use It (Example)
  • An Easy Introduction to Statistical Significance (With Examples)
  • An Introduction to t Tests | Definitions, Formula and Examples
  • ANOVA in R | A Complete Step-by-Step Guide with Examples
  • Central Limit Theorem | Formula, Definition & Examples
  • Central Tendency | Understanding the Mean, Median & Mode
  • Chi-Square (Χ²) Distributions | Definition & Examples
  • Chi-Square (Χ²) Table | Examples & Downloadable Table
  • Chi-Square (Χ²) Tests | Types, Formula & Examples
  • Chi-Square Goodness of Fit Test | Formula, Guide & Examples
  • Chi-Square Test of Independence | Formula, Guide & Examples
  • Coefficient of Determination (R²) | Calculation & Interpretation
  • Correlation Coefficient | Types, Formulas & Examples
  • Frequency Distribution | Tables, Types & Examples
  • How to Calculate Standard Deviation (Guide) | Calculator & Examples
  • How to Calculate Variance | Calculator, Analysis & Examples
  • How to Find Degrees of Freedom | Definition & Formula
  • How to Find Interquartile Range (IQR) | Calculator & Examples
  • How to Find Outliers | 4 Ways with Examples & Explanation
  • How to Find the Geometric Mean | Calculator & Formula
  • How to Find the Mean | Definition, Examples & Calculator
  • How to Find the Median | Definition, Examples & Calculator
  • How to Find the Mode | Definition, Examples & Calculator
  • How to Find the Range of a Data Set | Calculator & Formula
  • Hypothesis Testing | A Step-by-Step Guide with Easy Examples
  • Interval Data and How to Analyze It | Definitions & Examples
  • Levels of Measurement | Nominal, Ordinal, Interval and Ratio
  • Linear Regression in R | A Step-by-Step Guide & Examples
  • Missing Data | Types, Explanation, & Imputation
  • Multiple Linear Regression | A Quick Guide (Examples)
  • Nominal Data | Definition, Examples, Data Collection & Analysis
  • Normal Distribution | Examples, Formulas, & Uses
  • Null and Alternative Hypotheses | Definitions & Examples
  • One-way ANOVA | When and How to Use It (With Examples)
  • Ordinal Data | Definition, Examples, Data Collection & Analysis
  • Parameter vs Statistic | Definitions, Differences & Examples
  • Pearson Correlation Coefficient (r) | Guide & Examples
  • Poisson Distributions | Definition, Formula & Examples
  • Probability Distribution | Formula, Types, & Examples
  • Quartiles & Quantiles | Calculation, Definition & Interpretation
  • Ratio Scales | Definition, Examples, & Data Analysis
  • Simple Linear Regression | An Easy Introduction & Examples
  • Skewness | Definition, Examples & Formula
  • Statistical Power and Why It Matters | A Simple Introduction
  • Student's t Table (Free Download) | Guide & Examples
  • T-distribution: What it is and how to use it
  • Test statistics | Definition, Interpretation, and Examples
  • The Standard Normal Distribution | Calculator, Examples & Uses
  • Two-Way ANOVA | Examples & When To Use It
  • Type I & Type II Errors | Differences, Examples, Visualizations
  • Understanding Confidence Intervals | Easy Examples & Formulas
  • Understanding P values | Definition and Examples
  • Variability | Calculating Range, IQR, Variance, Standard Deviation
  • What is Effect Size and Why Does It Matter? (Examples)
  • What Is Kurtosis? | Definition, Examples & Formula
  • What Is Standard Error? | How to Calculate (Guide with Examples)

What is your plagiarism score?

An Overview of Data Analysis and Interpretations in Research

  • January 2020

Dawit Dibekulu at Bahir Dar University

  • Bahir Dar University

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations
  • Thuli Gladys Ntuli
  • Mpho Kenneth Madavha
  • Awelani Victor Mudau

Simphiwe Msimango

  • Samiya Telli

Houria Ghodbane

  • Yassine Kadmi

Duncan Cramer

  • John W Creswell
  • TECHNOMETRICS
  • Leone Y. Low
  • Matthew Hassett

Daniel Muijs

  • C. A. Moser
  • R. L. Ackoff
  • A. M. Wilkinson
  • Stuart W. Cook

Morton Deutsch

  • Marie Jahoda
  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Indian J Anaesth
  • v.60(9); 2016 Sep

Basic statistical tools in research and data analysis

Zulfiqar ali.

Department of Anaesthesiology, Division of Neuroanaesthesiology, Sheri Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India

S Bala Bhaskar

1 Department of Anaesthesiology and Critical Care, Vijayanagar Institute of Medical Sciences, Bellary, Karnataka, India

Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise only if proper statistical tests are used. This article will try to acquaint the reader with the basic research tools that are utilised while conducting various studies. The article covers a brief outline of the variables, an understanding of quantitative and qualitative variables and the measures of central tendency. An idea of the sample size estimation, power analysis and the statistical errors is given. Finally, there is a summary of parametric and non-parametric tests used for data analysis.

INTRODUCTION

Statistics is a branch of science that deals with the collection, organisation, analysis of data and drawing of inferences from the samples to the whole population.[ 1 ] This requires a proper design of the study, an appropriate selection of the study sample and choice of a suitable statistical test. An adequate knowledge of statistics is necessary for proper designing of an epidemiological study or a clinical trial. Improper statistical methods may result in erroneous conclusions which may lead to unethical practice.[ 2 ]

Variable is a characteristic that varies from one individual member of population to another individual.[ 3 ] Variables such as height and weight are measured by some type of scale, convey quantitative information and are called as quantitative variables. Sex and eye colour give qualitative information and are called as qualitative variables[ 3 ] [ Figure 1 ].

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g001.jpg

Classification of variables

Quantitative variables

Quantitative or numerical data are subdivided into discrete and continuous measurements. Discrete numerical data are recorded as a whole number such as 0, 1, 2, 3,… (integer), whereas continuous data can assume any value. Observations that can be counted constitute the discrete data and observations that can be measured constitute the continuous data. Examples of discrete data are number of episodes of respiratory arrests or the number of re-intubations in an intensive care unit. Similarly, examples of continuous data are the serial serum glucose levels, partial pressure of oxygen in arterial blood and the oesophageal temperature.

A hierarchical scale of increasing precision can be used for observing and recording the data which is based on categorical, ordinal, interval and ratio scales [ Figure 1 ].

Categorical or nominal variables are unordered. The data are merely classified into categories and cannot be arranged in any particular order. If only two categories exist (as in gender male and female), it is called as a dichotomous (or binary) data. The various causes of re-intubation in an intensive care unit due to upper airway obstruction, impaired clearance of secretions, hypoxemia, hypercapnia, pulmonary oedema and neurological impairment are examples of categorical variables.

Ordinal variables have a clear ordering between the variables. However, the ordered data may not have equal intervals. Examples are the American Society of Anesthesiologists status or Richmond agitation-sedation scale.

Interval variables are similar to an ordinal variable, except that the intervals between the values of the interval variable are equally spaced. A good example of an interval scale is the Fahrenheit degree scale used to measure temperature. With the Fahrenheit scale, the difference between 70° and 75° is equal to the difference between 80° and 85°: The units of measurement are equal throughout the full range of the scale.

Ratio scales are similar to interval scales, in that equal differences between scale values have equal quantitative meaning. However, ratio scales also have a true zero point, which gives them an additional property. For example, the system of centimetres is an example of a ratio scale. There is a true zero point and the value of 0 cm means a complete absence of length. The thyromental distance of 6 cm in an adult may be twice that of a child in whom it may be 3 cm.

STATISTICS: DESCRIPTIVE AND INFERENTIAL STATISTICS

Descriptive statistics[ 4 ] try to describe the relationship between variables in a sample or population. Descriptive statistics provide a summary of data in the form of mean, median and mode. Inferential statistics[ 4 ] use a random sample of data taken from a population to describe and make inferences about the whole population. It is valuable when it is not possible to examine each member of an entire population. The examples if descriptive and inferential statistics are illustrated in Table 1 .

Example of descriptive and inferential statistics

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g002.jpg

Descriptive statistics

The extent to which the observations cluster around a central location is described by the central tendency and the spread towards the extremes is described by the degree of dispersion.

Measures of central tendency

The measures of central tendency are mean, median and mode.[ 6 ] Mean (or the arithmetic average) is the sum of all the scores divided by the number of scores. Mean may be influenced profoundly by the extreme variables. For example, the average stay of organophosphorus poisoning patients in ICU may be influenced by a single patient who stays in ICU for around 5 months because of septicaemia. The extreme values are called outliers. The formula for the mean is

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g003.jpg

where x = each observation and n = number of observations. Median[ 6 ] is defined as the middle of a distribution in a ranked data (with half of the variables in the sample above and half below the median value) while mode is the most frequently occurring variable in a distribution. Range defines the spread, or variability, of a sample.[ 7 ] It is described by the minimum and maximum values of the variables. If we rank the data and after ranking, group the observations into percentiles, we can get better information of the pattern of spread of the variables. In percentiles, we rank the observations into 100 equal parts. We can then describe 25%, 50%, 75% or any other percentile amount. The median is the 50 th percentile. The interquartile range will be the observations in the middle 50% of the observations about the median (25 th -75 th percentile). Variance[ 7 ] is a measure of how spread out is the distribution. It gives an indication of how close an individual observation clusters about the mean value. The variance of a population is defined by the following formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g004.jpg

where σ 2 is the population variance, X is the population mean, X i is the i th element from the population and N is the number of elements in the population. The variance of a sample is defined by slightly different formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g005.jpg

where s 2 is the sample variance, x is the sample mean, x i is the i th element from the sample and n is the number of elements in the sample. The formula for the variance of a population has the value ‘ n ’ as the denominator. The expression ‘ n −1’ is known as the degrees of freedom and is one less than the number of parameters. Each observation is free to vary, except the last one which must be a defined value. The variance is measured in squared units. To make the interpretation of the data simple and to retain the basic unit of observation, the square root of variance is used. The square root of the variance is the standard deviation (SD).[ 8 ] The SD of a population is defined by the following formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g006.jpg

where σ is the population SD, X is the population mean, X i is the i th element from the population and N is the number of elements in the population. The SD of a sample is defined by slightly different formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g007.jpg

where s is the sample SD, x is the sample mean, x i is the i th element from the sample and n is the number of elements in the sample. An example for calculation of variation and SD is illustrated in Table 2 .

Example of mean, variance, standard deviation

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g008.jpg

Normal distribution or Gaussian distribution

Most of the biological variables usually cluster around a central value, with symmetrical positive and negative deviations about this point.[ 1 ] The standard normal distribution curve is a symmetrical bell-shaped. In a normal distribution curve, about 68% of the scores are within 1 SD of the mean. Around 95% of the scores are within 2 SDs of the mean and 99% within 3 SDs of the mean [ Figure 2 ].

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g009.jpg

Normal distribution curve

Skewed distribution

It is a distribution with an asymmetry of the variables about its mean. In a negatively skewed distribution [ Figure 3 ], the mass of the distribution is concentrated on the right of Figure 1 . In a positively skewed distribution [ Figure 3 ], the mass of the distribution is concentrated on the left of the figure leading to a longer right tail.

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g010.jpg

Curves showing negatively skewed and positively skewed distribution

Inferential statistics

In inferential statistics, data are analysed from a sample to make inferences in the larger collection of the population. The purpose is to answer or test the hypotheses. A hypothesis (plural hypotheses) is a proposed explanation for a phenomenon. Hypothesis tests are thus procedures for making rational decisions about the reality of observed effects.

Probability is the measure of the likelihood that an event will occur. Probability is quantified as a number between 0 and 1 (where 0 indicates impossibility and 1 indicates certainty).

In inferential statistics, the term ‘null hypothesis’ ( H 0 ‘ H-naught ,’ ‘ H-null ’) denotes that there is no relationship (difference) between the population variables in question.[ 9 ]

Alternative hypothesis ( H 1 and H a ) denotes that a statement between the variables is expected to be true.[ 9 ]

The P value (or the calculated probability) is the probability of the event occurring by chance if the null hypothesis is true. The P value is a numerical between 0 and 1 and is interpreted by researchers in deciding whether to reject or retain the null hypothesis [ Table 3 ].

P values with interpretation

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g011.jpg

If P value is less than the arbitrarily chosen value (known as α or the significance level), the null hypothesis (H0) is rejected [ Table 4 ]. However, if null hypotheses (H0) is incorrectly rejected, this is known as a Type I error.[ 11 ] Further details regarding alpha error, beta error and sample size calculation and factors influencing them are dealt with in another section of this issue by Das S et al .[ 12 ]

Illustration for null hypothesis

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g012.jpg

PARAMETRIC AND NON-PARAMETRIC TESTS

Numerical data (quantitative variables) that are normally distributed are analysed with parametric tests.[ 13 ]

Two most basic prerequisites for parametric statistical analysis are:

  • The assumption of normality which specifies that the means of the sample group are normally distributed
  • The assumption of equal variance which specifies that the variances of the samples and of their corresponding population are equal.

However, if the distribution of the sample is skewed towards one side or the distribution is unknown due to the small sample size, non-parametric[ 14 ] statistical techniques are used. Non-parametric tests are used to analyse ordinal and categorical data.

Parametric tests

The parametric tests assume that the data are on a quantitative (numerical) scale, with a normal distribution of the underlying population. The samples have the same variance (homogeneity of variances). The samples are randomly drawn from the population, and the observations within a group are independent of each other. The commonly used parametric tests are the Student's t -test, analysis of variance (ANOVA) and repeated measures ANOVA.

Student's t -test

Student's t -test is used to test the null hypothesis that there is no difference between the means of the two groups. It is used in three circumstances:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g013.jpg

where X = sample mean, u = population mean and SE = standard error of mean

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g014.jpg

where X 1 − X 2 is the difference between the means of the two groups and SE denotes the standard error of the difference.

  • To test if the population means estimated by two dependent samples differ significantly (the paired t -test). A usual setting for paired t -test is when measurements are made on the same subjects before and after a treatment.

The formula for paired t -test is:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g015.jpg

where d is the mean difference and SE denotes the standard error of this difference.

The group variances can be compared using the F -test. The F -test is the ratio of variances (var l/var 2). If F differs significantly from 1.0, then it is concluded that the group variances differ significantly.

Analysis of variance

The Student's t -test cannot be used for comparison of three or more groups. The purpose of ANOVA is to test if there is any significant difference between the means of two or more groups.

In ANOVA, we study two variances – (a) between-group variability and (b) within-group variability. The within-group variability (error variance) is the variation that cannot be accounted for in the study design. It is based on random differences present in our samples.

However, the between-group (or effect variance) is the result of our treatment. These two estimates of variances are compared using the F-test.

A simplified formula for the F statistic is:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g016.jpg

where MS b is the mean squares between the groups and MS w is the mean squares within groups.

Repeated measures analysis of variance

As with ANOVA, repeated measures ANOVA analyses the equality of means of three or more groups. However, a repeated measure ANOVA is used when all variables of a sample are measured under different conditions or at different points in time.

As the variables are measured from a sample at different points of time, the measurement of the dependent variable is repeated. Using a standard ANOVA in this case is not appropriate because it fails to model the correlation between the repeated measures: The data violate the ANOVA assumption of independence. Hence, in the measurement of repeated dependent variables, repeated measures ANOVA should be used.

Non-parametric tests

When the assumptions of normality are not met, and the sample means are not normally, distributed parametric tests can lead to erroneous results. Non-parametric tests (distribution-free test) are used in such situation as they do not require the normality assumption.[ 15 ] Non-parametric tests may fail to detect a significant difference when compared with a parametric test. That is, they usually have less power.

As is done for the parametric tests, the test statistic is compared with known values for the sampling distribution of that statistic and the null hypothesis is accepted or rejected. The types of non-parametric analysis techniques and the corresponding parametric analysis techniques are delineated in Table 5 .

Analogue of parametric and non-parametric tests

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g017.jpg

Median test for one sample: The sign test and Wilcoxon's signed rank test

The sign test and Wilcoxon's signed rank test are used for median tests of one sample. These tests examine whether one instance of sample data is greater or smaller than the median reference value.

This test examines the hypothesis about the median θ0 of a population. It tests the null hypothesis H0 = θ0. When the observed value (Xi) is greater than the reference value (θ0), it is marked as+. If the observed value is smaller than the reference value, it is marked as − sign. If the observed value is equal to the reference value (θ0), it is eliminated from the sample.

If the null hypothesis is true, there will be an equal number of + signs and − signs.

The sign test ignores the actual values of the data and only uses + or − signs. Therefore, it is useful when it is difficult to measure the values.

Wilcoxon's signed rank test

There is a major limitation of sign test as we lose the quantitative information of the given data and merely use the + or – signs. Wilcoxon's signed rank test not only examines the observed values in comparison with θ0 but also takes into consideration the relative sizes, adding more statistical power to the test. As in the sign test, if there is an observed value that is equal to the reference value θ0, this observed value is eliminated from the sample.

Wilcoxon's rank sum test ranks all data points in order, calculates the rank sum of each sample and compares the difference in the rank sums.

Mann-Whitney test

It is used to test the null hypothesis that two samples have the same median or, alternatively, whether observations in one sample tend to be larger than observations in the other.

Mann–Whitney test compares all data (xi) belonging to the X group and all data (yi) belonging to the Y group and calculates the probability of xi being greater than yi: P (xi > yi). The null hypothesis states that P (xi > yi) = P (xi < yi) =1/2 while the alternative hypothesis states that P (xi > yi) ≠1/2.

Kolmogorov-Smirnov test

The two-sample Kolmogorov-Smirnov (KS) test was designed as a generic method to test whether two random samples are drawn from the same distribution. The null hypothesis of the KS test is that both distributions are identical. The statistic of the KS test is a distance between the two empirical distributions, computed as the maximum absolute difference between their cumulative curves.

Kruskal-Wallis test

The Kruskal–Wallis test is a non-parametric test to analyse the variance.[ 14 ] It analyses if there is any difference in the median values of three or more independent samples. The data values are ranked in an increasing order, and the rank sums calculated followed by calculation of the test statistic.

Jonckheere test

In contrast to Kruskal–Wallis test, in Jonckheere test, there is an a priori ordering that gives it a more statistical power than the Kruskal–Wallis test.[ 14 ]

Friedman test

The Friedman test is a non-parametric test for testing the difference between several related samples. The Friedman test is an alternative for repeated measures ANOVAs which is used when the same parameter has been measured under different conditions on the same subjects.[ 13 ]

Tests to analyse the categorical data

Chi-square test, Fischer's exact test and McNemar's test are used to analyse the categorical or nominal variables. The Chi-square test compares the frequencies and tests whether the observed data differ significantly from that of the expected data if there were no differences between groups (i.e., the null hypothesis). It is calculated by the sum of the squared difference between observed ( O ) and the expected ( E ) data (or the deviation, d ) divided by the expected data by the following formula:

An external file that holds a picture, illustration, etc.
Object name is IJA-60-662-g018.jpg

A Yates correction factor is used when the sample size is small. Fischer's exact test is used to determine if there are non-random associations between two categorical variables. It does not assume random sampling, and instead of referring a calculated statistic to a sampling distribution, it calculates an exact probability. McNemar's test is used for paired nominal data. It is applied to 2 × 2 table with paired-dependent samples. It is used to determine whether the row and column frequencies are equal (that is, whether there is ‘marginal homogeneity’). The null hypothesis is that the paired proportions are equal. The Mantel-Haenszel Chi-square test is a multivariate test as it analyses multiple grouping variables. It stratifies according to the nominated confounding variables and identifies any that affects the primary outcome variable. If the outcome variable is dichotomous, then logistic regression is used.

SOFTWARES AVAILABLE FOR STATISTICS, SAMPLE SIZE CALCULATION AND POWER ANALYSIS

Numerous statistical software systems are available currently. The commonly used software systems are Statistical Package for the Social Sciences (SPSS – manufactured by IBM corporation), Statistical Analysis System ((SAS – developed by SAS Institute North Carolina, United States of America), R (designed by Ross Ihaka and Robert Gentleman from R core team), Minitab (developed by Minitab Inc), Stata (developed by StataCorp) and the MS Excel (developed by Microsoft).

There are a number of web resources which are related to statistical power analyses. A few are:

  • StatPages.net – provides links to a number of online power calculators
  • G-Power – provides a downloadable power analysis program that runs under DOS
  • Power analysis for ANOVA designs an interactive site that calculates power or sample size needed to attain a given power for one effect in a factorial ANOVA design
  • SPSS makes a program called SamplePower. It gives an output of a complete report on the computer screen which can be cut and paste into another document.

It is important that a researcher knows the concepts of the basic statistical methods used for conduct of a research study. This will help to conduct an appropriately well-designed study leading to valid and reliable results. Inappropriate use of statistical techniques may lead to faulty conclusions, inducing errors and undermining the significance of the article. Bad statistics may lead to bad research, and bad research may lead to unethical practice. Hence, an adequate knowledge of statistics and the appropriate use of statistical tests are important. An appropriate knowledge about the basic statistical methods will go a long way in improving the research designs and producing quality medical research which can be utilised for formulating the evidence-based guidelines.

Financial support and sponsorship

Conflicts of interest.

There are no conflicts of interest.

IMAGES

  1. What Is Data Analysis In Research Process

    definition of data analysis in research

  2. What is Data Analysis ?

    definition of data analysis in research

  3. Data analysis

    definition of data analysis in research

  4. What is Data Analysis? Techniques, Types, and Steps Explained

    definition of data analysis in research

  5. What Is the Data Analysis Process? (A Complete Guide)

    definition of data analysis in research

  6. The 4 Types of Data Analysis [Ultimate Guide]

    definition of data analysis in research

COMMENTS

  1. Data Analysis in Research: Types & Methods

    Definition of research in data analysis: According to LeCompte and Schensul, research data analysis is a process used by researchers to reduce data to a story and interpret it to derive insights. The data analysis process helps reduce a large chunk of data into smaller fragments, which makes sense. Three essential things occur during the data ...

  2. Data analysis

    data analysis, the process of systematically collecting, cleaning, transforming, describing, modeling, and interpreting data, generally employing statistical techniques. Data analysis is an important part of both scientific research and business, where demand has grown in recent years for data-driven decision making.Data analysis techniques are used to gain useful insights from datasets, which ...

  3. What Is Data Analysis? (With Examples)

    What Is Data Analysis? (With Examples) Data analysis is the practice of working with data to glean useful information, which can then be used to make informed decisions. "It is a capital mistake to theorize before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts," Sherlock Holme's proclaims ...

  4. Introduction to Data Analysis

    Data analysis can be quantitative, qualitative, or mixed methods. Quantitative research typically involves numbers and "close-ended questions and responses" (Creswell & Creswell, 2018, p. 3).Quantitative research tests variables against objective theories, usually measured and collected on instruments and analyzed using statistical procedures (Creswell & Creswell, 2018, p. 4).

  5. What is Data Analysis? An Expert Guide With Examples

    Data analysis is a comprehensive method of inspecting, cleansing, transforming, and modeling data to discover useful information, draw conclusions, and support decision-making. It is a multifaceted process involving various techniques and methodologies to interpret data from various sources in different formats, both structured and unstructured.

  6. Data Analysis

    Definition: Data analysis refers to the process of inspecting, cleaning, transforming, and modeling data with the goal of discovering useful information, drawing conclusions, and supporting decision-making. It involves applying various statistical and computational techniques to interpret and derive insights from large datasets.

  7. What is Data Analysis? An Introductory Guide

    An Introductory Guide. Data analysis is the process of inspecting, cleaning, transforming, and modeling data to derive meaningful insights and make informed decisions. It involves examining raw data to identify patterns, trends, and relationships that can be used to understand various aspects of a business, organization, or phenomenon.

  8. What Is Data Analysis? (With Examples)

    What Is Data Analysis? (With Examples) Data analysis is the practice of working with data to glean useful information, which can then be used to make informed decisions. "It is a capital mistake to theorise before one has data. Insensibly one begins to twist facts to suit theories, instead of theories to suit facts," Sherlock Holmes proclaims ...

  9. Quantitative Data Analysis: Everything You Need to Know

    What is quantitative data analysis? Quantitative data analysis is about applying statistical analysis methods to define, summarize, and contextualize numerical data. In short, it's about turning raw numbers and data into actionable insights. The analysis will vary depending on the research questions and the collected data (more on this below). ...

  10. Data Analysis in Quantitative Research

    Abstract. Quantitative data analysis serves as part of an essential process of evidence-making in health and social sciences. It is adopted for any types of research question and design whether it is descriptive, explanatory, or causal. However, compared with qualitative counterpart, quantitative data analysis has less flexibility.

  11. Data analysis

    Data analysis is the process of inspecting, cleansing, transforming, and modeling data with the goal of discovering useful information, informing conclusions, and supporting decision-making. [1] Data analysis has multiple facets and approaches, encompassing diverse techniques under a variety of names, and is used in different business, science, and social science domains. [2]

  12. Introduction to Research Statistical Analysis: An Overview of the

    Introduction. Statistical analysis is necessary for any research project seeking to make quantitative conclusions. The following is a primer for research-based statistical analysis. It is intended to be a high-level overview of appropriate statistical testing, while not diving too deep into any specific methodology.

  13. Data Analysis Techniques In Research

    Data Analysis Techniques in Research: While various groups, institutions, and professionals may have diverse approaches to data analysis, a universal definition captures its essence. Data analysis involves refining, transforming, and interpreting raw data to derive actionable insights that guide informed decision-making for businesses.

  14. What Is Data Analysis? The Complete Guide

    Data analysis is the art of uncovering valuable insights from data, This process involves collecting, cleaning, transforming, and organizing data to in a form that is easier to analyze, in order to find trends, insights, conclusions, and make predictions . Which empowers data-driven decision-making in various fields.

  15. (PDF) Different Types of Data Analysis; Data Analysis Methods and

    Data analysis is simply the process of converting the gathered data to meanin gf ul information. Different techniques such as modeling to reach trends, relatio nships, and therefore conclusions to ...

  16. PDF 2 An Introduction to Data Analysis

    in components of data analysis.1. Describ. ng data and formulating hypothesesWe describe data to better understand the p. oblem and to ask better questions. At its base, describing data focuses primarily on identifying the typical case (central tendency) and under-standing how typical.

  17. Data Analysis

    Data analysis is the method in which data is collected and organized so that the researcher will be able to look at the data and determine relationships. Data in statistics is often an ...

  18. Data Analysis: Definition, Types and Examples

    Prescriptive analysis is a decision-making analysis that uses mathematical modeling, optimization algorithms, and other data-driven techniques to identify the action for a given problem or situation. It combines mathematical models, data, and business constraints to find the best move or decision.

  19. What is Data Analysis? Research, Types & Example

    Data Analysis Tools. Data analysis tools make it easier for users to process and manipulate data, analyze the relationships and correlations between data sets, and it also helps to identify patterns and trends for interpretation. Here is a complete list of tools used for data analysis in research. Types of Data Analysis: Techniques and Methods

  20. PDF The SAGE Handbook of Qualitative Data Analysis

    The SAGE Handbook of. tive Data AnalysisUwe FlickMapping the FieldData analys. s is the central step in qualitative research. Whatever the data are, it is their analysis that, in a de. isive way, forms the outcomes of the research. Sometimes, data collection is limited to recording and docu-menting naturally occurring ph.

  21. Data Analysis in Research

    Data analysis in research is the systematic process of investigating facts and figures to make conclusions about a specific question or topic; there are two major types of data analysis methods in ...

  22. Data Analysis

    Data Analysis is the process of systematically applying statistical and/or logical techniques to describe and illustrate, condense and recap, and evaluate data. According to Shamoo and Resnik (2003) various analytic procedures "provide a way of drawing inductive inferences from data and distinguishing the signal (the phenomenon of interest) from the noise (statistical fluctuations) present ...

  23. What is Data Analysis?

    If you work with data, whether in business, research, or everyday life, you are likely engaged in data analysis without even realizing it. Coursera.com has the following definition of data analysis: "Data analysis is the practice of working with data to glean useful information, which can then be used to make informed decisions.

  24. The Beginner's Guide to Statistical Analysis

    Statistical analysis means investigating trends, patterns, and relationships using quantitative data. It is an important research tool used by scientists, governments, businesses, and other organizations. To draw valid conclusions, statistical analysis requires careful planning from the very start of the research process. You need to specify ...

  25. An Overview of Data Analysis and Interpretations in Research

    Research is a scientific field which helps to generate new knowledge and solve the existing problem. So, data analysis is the crucial part of research which makes the result of the study more ...

  26. Basic statistical tools in research and data analysis

    Statistical methods involved in carrying out a study include planning, designing, collecting data, analysing, drawing meaningful interpretation and reporting of the research findings. The statistical analysis gives meaning to the meaningless numbers, thereby breathing life into a lifeless data. The results and inferences are precise only if ...

  27. What Is Data Analysis? (With Examples)

    Analyse the data. By manipulating the data using various data analysis techniques and tools, you can find trends, correlations, outliers, and variations that tell a story. During this stage, you might use data mining to discover patterns within databases or data visualisation software to help transform data into an easy-to-understand graphical ...